Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessiondg1ncfgvcre83vpepckq8s8hpdgoq7la): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Environmental exposure to arsenic (As), lead (Pb) and cadmium (Cd) may cause chronic kidney disease (CKD), with varying independent effects and unclear combined impact. This study aimed to evaluate these effects on CKD.
Methods: 1,398 individuals were included. Urine arsenic (UAs) was determined by atomic fluorescence method. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73mor proteinuria. Generalized linear models (GLM), restricted cubic spline (RCS) models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were employed to study the independent and combined effects of exposure to As, Pb and Cd on CKD risk.
Results: Compared with non-CKD subjects, UAs, UCd, BPb, and creatinine adjusted urinary cadmium (UCdCr) were all significantly higher in CKD subjects. Compared with the lowest quartiles, the ORs (95%CIs) of CKD risk in the highest quartiles were 2.09 (1.16-3.74) for UAs, 2.84(1.56-5.18) for UCd, and 1.79 (1.05-3.06) for UCdCr, respectively. UAs, UCd, and UCdCr were all significantly positively associated with CKD risk in p-trend tests. RCS models revealed non-linear links between UAs, UCd, UCdCr and CKD risk, while a linear dose-response existed for BPb and CKD risk. The OR (95%CI) in WQS models were 1.72 (1.25-2.36) with UAs being the highest weighing metal(loid). BKMR models showed co-exposure mixture linked to higher CKD risk when the ln-transformed metal(loid)s above their 55th percentile. The ln-transformed UAs and UCdCr was significantly positively associated with CKD risk when the other two ln-transformed metals levels were all fixed at their different percentile levels. Synergism between Cd and Pb was also apparent.
Conclusions: Single As, and Cd exposure were positively associated with an increased CKD risk. Co-exposure to As, Pb and Cd was positively associated with CKD risk, with As playing a dominant role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-024-02318-3 | DOI Listing |
Heliyon
December 2024
Department of Biology, Faculty of Natural and Computational Sciences, Gondar University, P. O. Box: 136, Gondar, Ethiopia.
Nowadays, consumption of fish is becoming a public health concern due to quality and safety issues. This study was designed to assess the proximate composition, microbial quality, and heavy metal accumulation in the Nile tilapia fillet at three selected landing sites in Lake Tana. Fifteen samples were collected and analyzed.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA. Electronic address:
Dysregulated miRNA expression contributes to development of arsenic-induced cutaneous squamous cell carcinoma (cSCC). hsa-miR-186 (miR-186) is overexpressed in arsenical cSCC tissues as well as in preclinical cell line model of arsenical cSCC. Simultaneous miR-186 overexpression and chronic inorganic trivalent arsenite (iAs; 100 nM) exposure transformed human HaCaT cell line preferentially over miR-186 overexpression or iAs exposure alone.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei 230032, China. Electronic address:
The developing foetus is particularly sensitive to neurotoxic metals. The placenta is considered an ideal tissue for biomonitoring prenatal cumulative metal exposure. Based on the Ma'anshan Birth Cohort study (MABC) in China, this study investigated associations of non-essential metals and essential metals in placenta, including arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), cobalt (Co), selenium (Se) and zinc (Zn), with cognitive development in children among 1586 mother-child pairs.
View Article and Find Full Text PDFChemosphere
December 2024
Food and Nutrition Department, National Institute of Health Doctor Ricardo Jorge, IP (INSA), Avenida Padre Cruz 1649-016 Lisboa, Portugal.
The aim of this study was to estimate the 18 to 74 years old Portuguese population's baseline exposure to inorganic arsenic, cadmium and lead and the risk of exceeding the respective Health Based Guidance Value, using a harmonised Total Diet Study (TDS) methodology. TDS food samples representative of the whole diet were prepared as consumed and analysed for total arsenic, cadmium and lead. European Food Safety Authority's conservative approach was used to estimate inorganic arsenic.
View Article and Find Full Text PDFToxicology
December 2024
Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China. Electronic address:
With the increasing use of lithium-ion batteries, the exposure and health effects of lithium nickel manganate cobalt (NMC), a popular cathode material for the battery, have attracted widespread attention. However, the main absorption routes and target organs of NMC are unknown. This study aims to systematically investigate the main absorption routes and target organs of NMC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!