Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the significant interest in designing artificial ion channels, there is limited availability of channel-forming molecules to tackle complex issues, especially in biological systems. Moreover, a major challenge is the scarcity of chloride transporters that can selectively induce toxicity in cancer cells while minimizing harm to normal healthy cells. This work reports a series of 2-hydroxyphenyl benzamide-based small molecules 1 a-1 c, which self-assemble to form barrel rosette-type artificial ion channels that adequately transport chloride ions across membranes. The formation of these ion channels primarily relies on intermolecular hydrogen bonding and π-π stacking interactions, as supported by the analysis of single-crystal X-ray diffraction and molecular dynamics (MD) simulations. Importantly, chloride ion transport by these compounds specifically triggers apoptosis in cancer cells while demonstrating relatively low toxicity toward non-cancerous cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!