A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic antimicrobial action of chlorogenic acid and ultraviolet-A (365 nm) irradiation; mechanisms and effects on DNA integrity. | LitMetric

Synergistic antimicrobial action of chlorogenic acid and ultraviolet-A (365 nm) irradiation; mechanisms and effects on DNA integrity.

Food Res Int

Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: November 2024

Chlorogenic acid (CGA) is abundant in various plants and notably in coffee beans. This study investigated the bactericidal activity of CGA combined with ultraviolet-A light (UVA, 365 nm) (CGA + UVA) against Escherichia coli DH5α, with the aim of developing novel strategies for food preservation and healthcare. CGA + UVA treatment was superiorin reducing bacterial survival than either treatment alone. At 20 J/cm and pH 7, CGA (0.3%) + UVA treatment resulted in only about a 3-log reduction in bacterial survival, whereas at 15 J/cm and pH 3, no surviving bacteria could be detected, demostrating that the treatment was more effective at acidic pH. CGA + UVA treatment was also bactericidal in green plum juice, confirming that its low pH-dependent property could be effective in acidic food products. To elucidate the bactericidal mechanism of CGA + UVA treatment, its effects on reactive oxygen species (ROS) generation, membrane integrity, and enzyme activity were measured. ROS generated via the type-1 reaction, such as hydrogen peroxide (HO) and hydroxyl radicals (·OH), were mainly detected. CGA + UVA disrupted the bacterial cell membrane, causing the leakage of cellular components, particularly proteins. CGA + UVA treatment also led to deoxyribonucleic acid (DNA) degradation and reduced succinate-coenzyme Q reductase activity by approximately 72 %. Furthermore, CGA + UVA treatment decreased β-lactamase activity and plasmid transforming efficacy with maximal reductions of 68 % and 98 %, respectively, highlighting its potential for increasing antibiotic susceptibility and preventing the spread of antimicrobial resistance. The results demonstrate that CGA + UVA treatment could be used to effectively combat antibiotic-resistant bacteria and prevent the spoilage of preserved foods or food poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115132DOI Listing

Publication Analysis

Top Keywords

cga + uva treatment
24
treatment
9
chlorogenic acid
8
bacterial survival
8
effective acidic
8
cga + uva
7
synergistic antimicrobial
4
antimicrobial action
4
action chlorogenic
4
acid ultraviolet-a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!