Influence of phospholipid structures on volatile organic compounds generation in model systems.

Food Res Int

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * A total of 42 VOCs were identified, mainly consisting of aldehydes and ketones, with higher oxidation temperatures and durations leading to increased VOC production, peaking at 175 °C for 60 minutes.
  • * Results indicated that PE (16:0-18:2) and PC (16:0-18:2) generated more VOCs than PC (16:0-18:1), with the presence of polyunsaturated fatty acids making them more prone

Article Abstract

To investigate the regularities and differences in oxidation products of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by gas chromatography-mass spectrometry (GC-MS), and examine the influence of variations in fatty acid compositions and head groups on the kinds and contents of volatile organic compounds (VOCs) generated. A total of 42 VOCs were identified from PE (16:0-18:2), PC (16:0-18:2), and PC (16:0-18:1), with aldehydes and ketones being the main VOCs in three phospholipids (PLs). The content of most VOCs produced by PE (16:0-18:2), PC (16:0-18:2), and PC (16:0-18:1) increases with the increase of oxidation temperature and time. Reached peak at 175 °C for 60 min. The total VOCs contents generated by PE (16:0-18:2) and PC (16:0-18:2) were higher than those produced by PC (16:0-18:1), with PC (16:0-18:2) showing the highest total VOCs contents. PLs exhibited three mass loss processes with increasing temperature, namely stability, reduction, and stabilization. PC (16:0-18:2) experienced the highest mass loss, followed by PE (16:0-18:2), while PC (16:0-18:1) showed the least mass loss. These findings showed that polyunsaturated fatty acids were more susceptible to oxidation and degradation during oxidation, and the presence of choline groups in the form of PE may enhance the oxidative stability of fatty acyl groups compared to PC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115009DOI Listing

Publication Analysis

Top Keywords

total vocs
12
160-182 160-182
12
160-182 160-181
12
mass loss
12
160-182
9
volatile organic
8
organic compounds
8
vocs contents
8
vocs
6
influence phospholipid
4

Similar Publications

The aim of this study was to investigate the differences of quality indexes, bacterial community and volatile organic compounds (VOCs) of industrial-scale tiger skin chicken feet (TSCF) under air packaging (AP) and vacuum packaging (VP). The results showed that the pH, total volatile basic nitrogen, total number of bacterial colony, and sensory scores in VP group changed less than those in AP group during the storage period. Different packaging conditions also had significant effects on bacterial community at the genus levels.

View Article and Find Full Text PDF

Formaldehyde (HCHO), a major carbonyl compound in urban air, poses health risks due to its carcinogenic properties. However, the role of FT-PBL exchange in HCHO and the importance of vertical exchange on diurnal variations in HCHO remain unclear. This study investigated the diurnal variability of HCHO in Seoul's planetary boundary layer (PBL) during cold.

View Article and Find Full Text PDF

Background: Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored.

View Article and Find Full Text PDF

Strong emissions and aerosol formation potential of higher alkanes from diesel vehicles.

J Hazard Mater

December 2024

College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.

Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.

View Article and Find Full Text PDF

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!