Oleogels can be formed using different types of oleogelator, which lead to different end properties. In this study, four kinds of oleogelators, rice bran wax (RBW), monoglyceride stearate (MG), beeswax (BW), and a mixture of β-sitosterol and γ-oryzanol (SO) were used to prepare astaxanthin-loaded macadamia oil-based oleogels. Fourier transform infrared spectroscopy, polarized light microscopy, X-ray diffraction, differential scanning calorimetry, and dynamic shear rheometry were then used to evaluate the effects of the different oleogelators and astaxanthin on the physicochemical properties of the oleogels. The results showed that van der Waals forces played a key role in the formation of all the oleogels, while hydrogen bonding was also important for the SO- and MG-based oleogels. Moreover, astaxanthin addition did not change the crystal morphology and intramolecular interaction forces of the oleogels, but it did increase their oxidative stability and decrease their thermal stability, hardness, and oil-binding properties. In addition, the digestive behavior of the oleogels was evaluated using a three-stage in vitro gastrointestinal model. All the oleogelators significantly affected the lipolysis of the macadamia oil and the bioaccessibility of the astaxanthin, with the degree of lipolysis being positively correlated to the bioaccessibility. MG-based oleogels were the most effective at increasing the bioaccessibility of the astaxanthin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115131 | DOI Listing |
Food Chem
January 2025
College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China. Electronic address:
Non-dairy whipped creams (NDWC) are a typical food emulsion system and are gaining popularity among consumers. Oleogels as reasonable alternatives to trans and saturated fats in foods show great potential application in NDWC. Effects of different proportions of oleogel (30 %-70 %) as base oil on the crystallization behavior, appearance, interface and rheological properties of NDWC were evaluated.
View Article and Find Full Text PDFFoods
January 2025
Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland.
Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
This study focuses on numerical modeling of the oleogelation process using grape seed oil and beeswax and its validation using experimental approach. The main goal is to investigate how the cooling rate affects this process. The necessary physical and thermal properties of the oleogel for modeling were determined through experiments.
View Article and Find Full Text PDFMolecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!