High-level production of patatin in Pichia pastoris and characterization of N-glycosylation modification in food processing properties.

Food Res Int

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: November 2024

Patatin is an acidic protein found in potatoes that is commonly used in food and pharmaceutical industries due to its excellent emulsifying and gelation abilities. Pichia pastoris is widely used as a host for recombinant protein production because it can incorporate post-translational modifications. In this study, a patatin titre of 2189.8 mg/L was achieved in a 5 L bioreactor using P. pastoris GS115 with signal peptide mutation, dual promoter construction, co-expression of chaperone proteins and optimised fermentation. To enhance the application of recombinant patatin in the food processing field, the level of N-glycosylation was elevated by genetic engineering. Properties of natural patatin, recombinant patatin and patatin (N-glycosylated modified patatin) were investigated including foaming, hydrophobicity and emulsifying abilities. The functional properties of recombinant patatin were enhanced by introducing N-glycosylation, which also improved the water-holding capacity of its gel. The patatin gel exhibited superior elasticity and water retention properties. The findings provide valuable insight and serve as a reference for the utilisation of recombinant patatin. The established enhancement strategy could be applied to other recombinant proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115111DOI Listing

Publication Analysis

Top Keywords

recombinant patatin
16
patatin
11
pichia pastoris
8
food processing
8
recombinant
6
high-level production
4
production patatin
4
patatin pichia
4
pastoris characterization
4
characterization n-glycosylation
4

Similar Publications

High-level production of patatin in Pichia pastoris and characterization of N-glycosylation modification in food processing properties.

Food Res Int

November 2024

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Patatin is an acidic protein found in potatoes that is commonly used in food and pharmaceutical industries due to its excellent emulsifying and gelation abilities. Pichia pastoris is widely used as a host for recombinant protein production because it can incorporate post-translational modifications. In this study, a patatin titre of 2189.

View Article and Find Full Text PDF

PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by inhibiting ATGL-mediated triglyceride hydrolysis.

J Hepatol

November 2024

Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA; The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA. Electronic address:

Background & Aims: PNPLA3(148M) (patatin-like phospholipase domain-containing protein 3) is the most impactful genetic risk factor for steatotic liver disease (SLD). A key unresolved issue is whether PNPLA3(148M) confers a loss- or gain-of-function. Here we test the hypothesis that PNPLA3 causes steatosis by sequestering ABHD5 (α/β hydrolase domain-containing protein 5), the cofactor of ATGL (adipose TG lipase), thus limiting mobilization of hepatic triglyceride (TG).

View Article and Find Full Text PDF

Purpose: The evaluation of the effect of dulaglutide on glycated hemoglobin (HbA1c) and non-invasive indices of hepatic steatosis among different genotypes of the PNPLA3 I148M (rs738409) and CETP Taq1B (rs708272) polymorphisms in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD).

Methods: Relevant data from patients with inadequately controlled T2DM, also displaying NAFLD, administered 1.5 mg dulaglutide weekly for 6 months were retrospectively retrieved.

View Article and Find Full Text PDF

A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system.

View Article and Find Full Text PDF

Loss-of-function mutations in patatin-like phospholipase domain-containing protein 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, and altered PNPLA1 activity is implicated in the pathogenesis of atopic dermatitis and other common skin diseases. To examine the hypothesis that PNPLA1 catalyzes the synthesis of acylceramides and acyl acids, we expressed and partially purified a soluble, truncated form of PNPLA1 in Escherichia coli, (PNPLA1) along with the related protein PNPLA2 (ATGL, adipose triglyceride lipase) and coactivator CGI-58. Liposomal substrates were incubated with recombinant enzymes for 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!