Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to evaluate the influence of sample moisture, extrusion temperature, and extruder screw speed on the hydration properties of corn gluten meal (CG), optimize process condition for the highest protein solubility at pH 7 (PS7) and WAC, and assess the effect of the optimized extrusion process on the structural, chemical, physical, and technofunctional properties of CG proteins. Extrusion was carried out at different sample moisture (20%-40%), temperatures (120-160 °C), and screw speeds (33-117 rpm) using a complete factorial design with two central points. All extrusion conditions resulted in reduced hydration properties. Extrusion with 20% sample moisture, 120 °C and 117 rpm resulted in the lowest loss of water absorption capacity and protein solubility at pH 7 (optimized condition). After optimized extrusion, the GC became darker and showed greater activity and protein emulsifying capacity and lower foaming capacity. Furthermore, CG proteins had reduced solubility at different pHs. Changes in technofunctional properties resulted from changes in protein structure after extrusion. The new protein structure is stabilized by non-covalent bonds (hydrogen bonds and hydrophobic interactions) and disulfide bonds. Extruded corn gluten has the potential to be used as an ingredient in bakery, emulsified meat products, salad dressings, vegetable pates, and desserts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!