Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant.

Food Res Int

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * A study on white, red, and black currants utilized transcriptomics and metabolomics to identify key anthocyanins that determine the fruits' red and purple colors.
  • * The research found specific genes and transcription factors that regulate anthocyanin production, enhancing color development in currants during their growth stages.

Article Abstract

Anthocyanins are natural plant metabolites that are beneficial for human health. In order to study the fruit coloring mechanism mediated by anthocyanin biosynthesis in three currant varieties (white currant, red currant and black currant), we used a combination of transcriptomics and metabolomics analyses. Our comprehensive examination revealed that anthocyanins play a pivotal role in regulating the red and purple hues of black currant and red currant fruits. Specifically, Delphinidin-3-O-rutinoside, Pelargonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, Cyanidin-3,5-O-diglucoside, Cyanidin-3-O-rutinoside-5-O-glucoside and Petunidin-3-O-glucoside emerged as key anthocyanins in black currant, while Cyanidin-3-O-rutinoside (Keracyanin), Cyanidin-3-O-sambubioside[Cyanidin-3-O-(2″-O-xylosyl)glucoside], Cyanidin-3-O-glucoside (Kuromanin) and Cyanidin-3-O-(2″-O-xylosyl)rutinoside were identified as crucial anthocyanins in red currant. Transcriptomic data showed that the upregulation of dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT) genes significantly promoted the purple coloration of black currant fruit, while increased expression of Chalcone synthase (CHS) and flavonoid 3'-hydroxylase (F3'H) genes significantly intensified the red hue of red currant fruit. Furthermore, through weighted gene co-expression network analysis (WGCNA), we identified 11 transcription factors, including 3 bHLH, 2 MYB, 3 bZIP and 3 WRKY genes, which may serve as key regulators of anthocyanin biosynthesis. These findings provide a foundational understanding of the color dynamics in different currant varieties fruits throughout their developmental stages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115056DOI Listing

Publication Analysis

Top Keywords

red currant
16
black currant
16
anthocyanin biosynthesis
12
currant
12
biosynthesis three
8
currant varieties
8
currant red
8
currant fruit
8
red
6
transcriptomic metabolomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!