In this study, the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi and its internal influencing mechanism were investigated. The results showed that with increasing frozen storage time, the solid-like property proportion of frozen Liangpi gradually enhanced, and its hardness and chewiness gradually increased, and its springiness gradually decreased, while its digestion rate gradually slowed down. During frozen storage, the water fluidity of frozen Liangpi gradually enhanced, and its starch molecules rearrangement degree gradually deepened. Meanwhile, the squeezing on the structure of frozen Liangpi caused by ice crystals recrystallization gradually aggravated. Based on the above results, it could be speculated that starch retrogradation caused by ice crystals recrystallization was the critical reason for the changes in the rheology, texture and in vitro digestibility of frozen Liangpi during frozen storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114904 | DOI Listing |
Food Res Int
November 2024
College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China. Electronic address:
In this study, the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi and its internal influencing mechanism were investigated. The results showed that with increasing frozen storage time, the solid-like property proportion of frozen Liangpi gradually enhanced, and its hardness and chewiness gradually increased, and its springiness gradually decreased, while its digestion rate gradually slowed down. During frozen storage, the water fluidity of frozen Liangpi gradually enhanced, and its starch molecules rearrangement degree gradually deepened.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!