Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2911386 | DOI Listing |
Aging Dis
December 2024
Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction.
View Article and Find Full Text PDFSchmerz
January 2025
, Wilhelm-Danner-Str. 49, 76287, Rheinstetten, Deutschland.
Background: MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression, but we have limited insight into their role in age-related cerebral pathologies. Here, we investigated the association between miRNAs and nine age-related cerebral pathologies in participants of the ROS/MAP cohorts.
Method: MiRNA sequencing was performed on samples from the dorsolateral prefrontal cortex of 617 brain donors from participants of the ROS/MAP cohorts.
Alzheimers Dement
December 2024
University of California, Davis School of Medicine, Sacramento, CA, USA.
Background: Examining the neuropathology of the oldest-old has significantly advanced our understanding of the multiple etiologies in very late life. Most studies have included exclusively White decedents with limited ethnoracial diversity. Our goal was to characterize neuropathology in a cohort of ethnically and racially diverse oldest-old decedents.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) denotes TDP-43 deposition in older age and is consequential for cognitive function. Currently there is no way to identify LATE-NC during life. Some forms of TDP-43 deposition in younger age, related to frontotemporal dementia (FTD), are associated with pronounced asymmetrical atrophy of the temporal lobe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!