The use of bioelectrical impedance analysis (BIA) is now well established in healthcare as an essential support tool for patient management in various clinical settings. Its use in sports is rapidly expanding due to the valuable insights it offers, helping to better structure athletes' diets and training programs, thereby optimizing their performance. In the context of sport, however, there is a consensus regarding the importance of proper interpretation of BIA-derived data, which cannot be limited to mere estimation of body composition. In this sense, therefore, the evaluation and interpretation of raw bioelectrical parameters, including resistance, reactance, and phase angle (PhA) is of relevant importance. The assessment of PhA is particularly significant in the context of sports, as it is closely linked to key factors such as muscle mass, strength, and overall muscle quality. However, the existing relationship between PhA and systemic, and loco-regional inflammation, which, in a broader sense, is the rationale behind its use for assessing and monitoring localised muscle damage. Thus, the importance of PhA monitoring during training becomes evident, as it plays a crucial role in assessing and potentially identifying functional impairments, such as overtraining syndrome, as well as muscle injury and related changes in fluid distribution, at an early stage. The aim of this review is to provide the scientific basis necessary to consider the use of whole-body PhA as an indicator of overtraining.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605935 | PMC |
http://dx.doi.org/10.1186/s12967-024-05918-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!