A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems. | LitMetric

Rapid and precise forecasting of dynamical systems is critical to ensuring safe aerospace missions. Previous forecasting research has primarily concentrated on global trend analysis using full-scale inputs. However, time series arising from real-world applications such as aerospace propulsion, exhibit a distinct dynamical periodicity over a limited timeframe. Here we develop a deep learning model, TimeWaves, to capture both global trends and local variations, through 3D spectrum-oriented interval extraction from an integrated viewpoint of biological perceptions. Specifically, a shared parameter fusion algorithm is employed to effectively integrate Fourier and Wavelet analyses, providing full and sliced 1D sequences to form 2D tensors that can be seamlessly processed by parameter-efficient inception blocks. Additionally, a dual-way learning workflow using TwinBlock, inspired by the cooperative behavior of visual cells, is implemented to enhance perception of dynamical multi-scale features at a reduced computational cost. TimeWaves demonstrates reliable and robust performance in predicting rocket combustion instability, a key challenge in the aerospace industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607337PMC
http://dx.doi.org/10.1038/s44172-024-00327-9DOI Listing

Publication Analysis

Top Keywords

aerospace propulsion
8
bio-inspired multi-dimensional
4
multi-dimensional deep
4
deep fusion
4
fusion learning
4
learning predicting
4
dynamical
4
predicting dynamical
4
aerospace
4
dynamical aerospace
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!