Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid and precise forecasting of dynamical systems is critical to ensuring safe aerospace missions. Previous forecasting research has primarily concentrated on global trend analysis using full-scale inputs. However, time series arising from real-world applications such as aerospace propulsion, exhibit a distinct dynamical periodicity over a limited timeframe. Here we develop a deep learning model, TimeWaves, to capture both global trends and local variations, through 3D spectrum-oriented interval extraction from an integrated viewpoint of biological perceptions. Specifically, a shared parameter fusion algorithm is employed to effectively integrate Fourier and Wavelet analyses, providing full and sliced 1D sequences to form 2D tensors that can be seamlessly processed by parameter-efficient inception blocks. Additionally, a dual-way learning workflow using TwinBlock, inspired by the cooperative behavior of visual cells, is implemented to enhance perception of dynamical multi-scale features at a reduced computational cost. TimeWaves demonstrates reliable and robust performance in predicting rocket combustion instability, a key challenge in the aerospace industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607337 | PMC |
http://dx.doi.org/10.1038/s44172-024-00327-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!