Introduction to the Use of Microbial Communities.

Adv Biochem Eng Biotechnol

University of Helsinki, Helsinki, Finland.

Published: November 2024

Microbes are the third major group of biospheric organisms after plants and animals. They are responsible for many natural circulations, including the rotation of elements. They return organic carbon for plants' use and dissolve minerals into organic cycles. Microbes contribute to the global gas and water balances. In animal digestion, they partake in the degradation and assimilation of nutrients. Typically, they act as communities where some strains are the most active at a given time point in the prevailing conditions. But they also live in a continuous state of succession, which precludes the maintenance of changeable balances. Whether functioning in soil, in our alimentary tract, or elsewhere, the micro-organisms decisively contribute to the restoration of various balances. As the microbiological scale differs significantly from our comprehension, we must nurture our understanding of the microbiome wherever it occurs. For example, one spoonful of yoghurt contains approximately as many bacterial cells as there are humans residing on Earth. Therefore, such organizational flexibility and interaction are the most advisable modes of operation in microbial biochemistry and biotechnological applications. As microbes tend to form communities, this modus operandi is worth instigating in our process industries and production technologies. The use of microbial mixed cultures most appropriately corresponds to the natural systems. As biocatalysts in human endeavours of biorefining and bioengineering, they have become the most utilizable and producible kind of microbial components. Cooperation with microbes is a prerequisite for the continuous development of sustainable industries and food and health production. The microbial communities can be used to prevent and clean up pollution. In the process design, the microbiological dynamic balances make the highest productivity, repeatability, controllability, and withstanding of entropy. Although their effects have been familiar to our societies, e.g. in the fermentation of foods, their total capacity remains to be put into service. Hopefully, this book could help turn the next page in the development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2024_265DOI Listing

Publication Analysis

Top Keywords

microbial communities
8
introduction microbial
4
communities
4
microbes
4
communities microbes
4
microbes third
4
third major
4
major group
4
group biospheric
4
biospheric organisms
4

Similar Publications

The Kidney-Immune-Brain Axis: The Role of Inflammation in the Pathogenesis and Treatment of Stroke in Chronic Kidney Disease.

Stroke

January 2025

Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).

Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.

View Article and Find Full Text PDF

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Synergistic defecation effects of subsp. BL-99 and fructooligosaccharide by modulating gut microbiota.

Front Immunol

January 2025

Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.

Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!