A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

De-identification is not enough: a comparison between de-identified and synthetic clinical notes. | LitMetric

For sharing privacy-sensitive data, de-identification is commonly regarded as adequate for safeguarding privacy. Synthetic data is also being considered as a privacy-preserving alternative. Recent successes with numerical and tabular data generative models and the breakthroughs in large generative language models raise the question of whether synthetically generated clinical notes could be a viable alternative to real notes for research purposes. In this work, we demonstrated that (i) de-identification of real clinical notes does not protect records against a membership inference attack, (ii) proposed a novel approach to generate synthetic clinical notes using the current state-of-the-art large language models, (iii) evaluated the performance of the synthetically generated notes in a clinical domain task, and (iv) proposed a way to mount a membership inference attack where the target model is trained with synthetic data. We observed that when synthetically generated notes closely match the performance of real data, they also exhibit similar privacy concerns to the real data. Whether other approaches to synthetically generated clinical notes could offer better trade-offs and become a better alternative to sensitive real notes warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607336PMC
http://dx.doi.org/10.1038/s41598-024-81170-yDOI Listing

Publication Analysis

Top Keywords

clinical notes
20
synthetically generated
16
notes
9
synthetic clinical
8
synthetic data
8
language models
8
generated clinical
8
real notes
8
membership inference
8
inference attack
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!