AI Article Synopsis

  • Hypertension leads to thickening of the aortic wall as the body tries to restore normal stress levels.
  • Researchers proposed that stress fibers (SFs) in smooth muscle cells (SMCs) transmit this mechanical tension to the nucleus, influencing cell response.
  • By studying thoracic aortas from different rat models (Wistar Kyoto and spontaneously hypertensive), they found that SF strain varies with changes in blood pressure, confirming SFs act as mechanosensors to respond to hypertensive conditions.

Article Abstract

Hypertension causes aortic wall thickening until the original wall stress is restored. We hypothesized that this regulation involves stress fiber (SF) tension transmission to the nucleus in smooth muscle cells (SMCs) and investigated the strain in the SF direction as a condition required for this transmission. Thoracic aortas from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs) were examined. SFs in aortic SMCs were fluorescently labeled and observed under a confocal microscope while stretched along the circumferential (θ) axis. Three conditions were studied: WKY physiological (WKY; blood pressure changes from diastolic to systolic for WKY), high-strain state (WKY; diastolic to hypertensive level for WKY simulating initial hypertension), and SHR physiological (SHR; diastolic to systolic for SHR simulating after wall-thickening). SF strain and direction were measured. The SF inclination angle from the θ axis was 18° ± 3° in WKY 13° ± 2° in WKY, and 20° ± 1° in SHR. SF strain was 0.01 ± 0.02 in WKY, 0.20 ± 0.04 in WKY, and 0.02 ± 0.02 SHR. SF strain was minimal in WKY, significantly increased in WKY, and reduced to approximately zero in SHR. These findings support SFs function as mechanosensors in response to hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606938PMC
http://dx.doi.org/10.1038/s41598-024-81229-wDOI Listing

Publication Analysis

Top Keywords

wky
12
stress fiber
8
smooth muscle
8
wall thickening
8
strain direction
8
diastolic systolic
8
shr strain
8
shr
6
strain
5
fiber strain
4

Similar Publications

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Background: Systemic Arterial Hypertension (SAH), distinguished by a persistent elevation of blood pressure, emerges as a risk factor for stroke and Alzheimer's Disease (AD). Additionally, recent evidence suggests that stroke may adversely affect memory, potentially playing a role in the development of AD. This study aimed to investigate the influence of permanent focal ischemic stroke on memory, as well as on sensorimotor function (asymmetry of the front paws) and cerebral infarct size in adult male spontaneously hypertensive rats (SHR), compared to normotensive Wistar Kyoto (WKY) rats.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

December 2024

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

NAD deficiency plays essential roles in the hyperuricemia of stroke-prone spontaneously hypertensive rat via xanthine dehydrogenase to xanthine oxidase conversion.

Biochem Biophys Res Commun

January 2025

Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan; The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan. Electronic address:

Inhibition of xanthine oxidoreductase (XOR) was shown to ameliorate the stroke susceptibility in the stroke-prone spontaneously hypertensive rat (SHRSP), suggesting hyperuricemia had a pathological role in this rat model. In this study, we thus aimed to explore mechanisms inducing hyperuricemia in SHRSP. XOR is known to have two forms, xanthine dehydrogenase (XDH) as the prototype and xanthine oxidase (XO) as the converted form through cleavage of a peptide bond or through formation of disulfide bonds in the enzyme.

View Article and Find Full Text PDF

Effect of electroacupuncture on metabolic alterations in the hippocampus and dorsal raphe nucleus of Wistar Kyoto rats.

Brain Res

December 2024

Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China. Electronic address:

Depression is underpinned by a complex pathogenesis that involves the hippocampus and dorsal raphe nucleus (DRN) of the central nervous system. Although electroacupuncture (EA) is proven to be safe and effective for alleviating depression symptoms and causes minimal side effects, its underlying therapeutic mechanism remains unclear. In this study, we performed targeted metabolomics to identify metabolite alterations in the hippocampus and DRN of Wistar Kyoto (WKY) rats and elucidate the role and potential mechanism of action of EA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!