A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sulfites and sulfates formed by weathering of early martian carbonates in a sulfur dioxide-bearing atmosphere. | LitMetric

Despite ample evidence that extensive water-rock interactions occurred under a CO-dominated atmosphere on early Mars, carbonate minerals are relatively rare at the surface. One possibility to explain this scarcity is that carbonates were initially abundant, but were later destroyed when atmospheric conditions changed, particularly as a result of volcanism releasing large volumes of sulfur dioxide SO into the atmosphere. However, despite some early theoretical and experimental results, no study has investigated the stability of the most common carbonates (Ca, Mg and Fe) in the presence of abundant SO gas. Here we present the results of experiments demonstrating that carbonates are systematically unstable when exposed to 0.8 bar of SO in moderately oxidizing (SO + HO) or strongly oxidizing (SO + HO + HO) environments. In both environments, the reaction end products are systematically sulfates, except for calcium carbonate, which predominantly transforms into calcium sulfite (hannebachite) in moderately oxidizing conditions. Based on these results, carbonates formed early in martian history would have been rapidly decomposed and replaced by sulfates (and sulfites if calcium was abundant enough) in the presence of abundant SO released by major volcanic events such as those associated with the build-up of the Tharsis rise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607444PMC
http://dx.doi.org/10.1038/s41598-024-80466-3DOI Listing

Publication Analysis

Top Keywords

early martian
8
atmosphere despite
8
presence abundant
8
moderately oxidizing
8
carbonates
5
sulfites sulfates
4
sulfates formed
4
formed weathering
4
early
4
weathering early
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!