The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations. Both compounds show strong interactions with functionally important residues of the PDK3 with a binding affinity of - 10.6 and - 10.5 kcal/mol for Bagrosin and Dehydrocholic acid, respectively. MD simulation studies for 100 ns suggest the formation of stable complexes, which is evident from RMSD, RMSF, Rg, and SASA parameters. The PCA and FEL analysis suggested admirable global energy minima for the bagrosin-PDK3 and dehydrocholic acid-PDK3 complexes. Finally, we identified FDA-approved drugs, Bagrosin and Dehydrocholic acid, that offer valuable resources and potential therapeutic molecules for targeting lung cancer. Further clinical investigations are required to validate the clinical utility of selected molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607412 | PMC |
http://dx.doi.org/10.1038/s41598-024-78022-0 | DOI Listing |
Sci Rep
November 2024
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!