This study proposes a novel non-linear modelling approach to predict the dissolution profiles of extended-release tablets, by combining a full-factorial design, curve fitting to the dissolution profiles, and artificial neural networks (ANN), with linear regression methods, partial least squares (PLS) and multiple linear regression (MLR) as benchmarks. Hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC) grades, active pharmaceutical ingredient (API) lubrication, and compression force were chosen as DoE factors. The resulting batches were tested to obtain their corresponding dissolution profile, and a first-order dissolution equation was fitted to each profile. ANN, PLS and MLR were used to model and predict the tablet-specific constant k which then served to simulate dissolution profiles. This study demonstrates how non-linear methods, specifically ANN, outperform traditional linear models in predicting the complex interactions affecting drug release from extended-release formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2024.106976 | DOI Listing |
Drug Dev Ind Pharm
December 2024
Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330 Etiler, Ankara, Türkiye.
Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modelling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA.
Rat pharmacokinetic studies are commonly utilized in early discovery to support absorption, distribution, metabolism, and excretion optimization of active pharmaceutical ingredients (APIs). The aim of this work was to compare exposures from fit-for-purpose oral suspension and solution formulations in rats to guidance provided by the refined Developability Classification System (rDCS) with respect to identifying potential limits to oral absorption, formulation strategy selection, and to optimize oral bioavailability (BA). This investigation utilized six diverse APIs covering a large range of biorelevant solubility, metabolic stability, and oral BA in rats.
View Article and Find Full Text PDFBehav Brain Sci
December 2024
Department of Experimental and Applied Psychology, VU Amsterdam, Amsterdam, Netherlands, and University of Cologne, Germany; www.paulvanlange.com.
Women are often viewed as more romantic than men, and romantic relationships are assumed to be more central to the lives of women than to those of men. Despite the prevalence of these beliefs, some recent research paints a different picture. Using principles and insights based on the interdisciplinary literature on mixed-gender relationships, we advance a set of four propositions relevant to differences between men and women and their romantic relationships.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
M.M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana- 133203, Ambala, India.
Background: Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:
Mesoporous carriers have gained significant attention for enhancing the solubility and bioavailability of Biopharmaceutics Classification System (BCS) Class II drugs. However, the contribution of mesoporous carriers with varying morphologies to the physical stability of these drugs is not well-defined. In this work, mesoporous carbon nanoparticles (MCN) and hollow carbon mesoporous nanoparticles (HMC) were prepared, while the weakly acidic Indomethacin (IMC) and alkaline Celecoxib (CXB) were incorporated into these carriers in the amorphous state by the solvent evaporation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!