β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans. A genome-edited Nicotiana benthamiana glycosylation mutant (NbXF-KO) that synthesizes conserved eukaryotic GnGn structures served as a template for further elongation toward β1,4-galactosylated N-glycans. A hybrid β1,4-galactosyltransferase gene that targets the enzyme to a post-Golgi compartment was introduced into the NbXF-KO genome without any additional foreign DNA sequence. The efficient generation of "marker-free" transgenic lines (NbXF-KO) was achieved by using a dual-vector strategy and visual screening procedures. Of note, a monoclonal antibody expressed in NbXF-KO exhibited up to 70 % galactosylated, fucose/xylose-free N-glycans, in a batch-to-batch consistent manner. Given recent findings attributing anti-inflammatory activities to nonfucosylated, galactosylated IgG, our results gain new significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2024.11.007DOI Listing

Publication Analysis

Top Keywords

nicotiana benthamiana
8
recombinant proteins
8
β14-galactosylated n-glycans
8
industrial-grade nicotiana
4
benthamiana production
4
production glycoproteins
4
glycoproteins carrying
4
carrying fucose-free
4
fucose-free galactosylated
4
n-glycans
4

Similar Publications

Steviol glycosides (SGs) are noncaloric natural sweeteners found in the leaves of stevia (). These diterpene glycosides are biosynthesized by attaching varying numbers of monosaccharides, primarily glucose, to steviol aglycone. Rebaudioside (Reb) D and Reb M are highly glucosylated SGs that are valued for their superior sweetness and organoleptic properties, yet they are present in limited quantities in stevia leaves.

View Article and Find Full Text PDF

A microRNA with a non-canonical precursor structure harbours an intron in between its miRNA-5p and miRNA-3p relevant for its biogenesis, is conserved across Solanaceae, and targets the mRNA of low phosphate root. Hundreds of miRNAs have been identified in plants and great advances have been accomplished in the understanding of plant miRNA biogenesis, mechanisms and functions. Still, many miRNAs, particularly those with less conventional features, remain to be discovered.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Physiol Plant

January 2025

Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.

Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!