Unveiling the role of mechanical process intensifications and chemical additives in boosting lipase-catalyzed hydrolysis of vegetable oil for fatty acid production: A comprehensive review.

Int J Biol Macromol

Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia. Electronic address:

Published: January 2025

AI Article Synopsis

  • * Key challenges include the immiscibility of triacylglycerols with water and the lower efficiency of enzymes relative to chemical catalysts.
  • * The review suggests that using chemical additives, particularly a combination of ionic liquids and polyols, can significantly enhance enzymatic hydrolysis efficiency, making the process more effective and less damaging to enzymes.

Article Abstract

The enzymatic production of fatty acids from vegetable oils is becoming a preferred method due to its mild conditions, simplicity, and scalability. This review analyzes studies on enzymatic hydrolysis, exploring various feedstocks, lipases, reaction conditions, and conversion yields. However, a key limitation is the longer reaction time compared to conventional methods. This limitation is primarily due to the immiscibility of triacylglycerols (TAGs) with water at low temperatures and pressures, as well as the lower activity of enzymes compared to chemical catalysts. To overcome these issues, chemical additives are identified as the most effective process intensification strategy. They are easy to implement, cause less damage to lipases, and are more efficient than mechanical methods. The impact of various chemical additives was thoroughly examined for potential improvements in the enzymatic hydrolysis of vegetable oils. A synergistic combination of chemical additives comprising ionic liquids (ILs) and polyols, along with ultrasound, as well as the consideration of immobilization techniques were explored. Overall, this review highlights the potential of chemical additives and their synergistic feasibility in enhancing the enzymatic performance of lipase-catalyzed hydrolysis reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138144DOI Listing

Publication Analysis

Top Keywords

chemical additives
20
lipase-catalyzed hydrolysis
8
hydrolysis vegetable
8
vegetable oils
8
enzymatic hydrolysis
8
chemical
6
additives
5
unveiling role
4
role mechanical
4
mechanical process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!