AI Article Synopsis

  • Gekko swinhonis, or Gecko, is a traditional Chinese medicine known for its effectiveness in treating gastrointestinal cancers like gastric cancer, necessitating more research on its active ingredients.
  • The study focused on isolating and characterizing the most active components of Gecko, particularly their anti-cancer mechanisms related to inhibiting vascular endothelial cells and new blood vessel formation.
  • Results showed that Gecko components effectively inhibit angiogenesis, with specific peptides demonstrating strong anti-cancer properties and good safety profiles in animal models, highlighting their potential for localized cancer treatment.

Article Abstract

Ethnopharmacological Relevance: Gekko swinhonis Guenther, commonly referred to as Gecko in the following text, belongs to the genus Gekko within the family Gekko. Its dried whole body is a widely utilized traditional Chinese medicine, demonstrating significant efficacy in the treatment of gastrointestinal malignancies, particularly gastric cancer (GC). Nevertheless, the composition of the gecko is complex, necessitating further research into its active ingredients for the treatment of GC.

Aim Of The Study: Isolation and characterization of the most active components in Gecko based on their anti-GC mechanisms of vascular endothelial cell inhibition and anti-neovascularization.

Materials And Methods: We utilized the enzymatic hydrolysate of Geckos to investigate its effectiveness and underlying mechanisms. Initially, we assessed its efficacy in ectopic and in-situ GC tumor-bearing mouse models. Subsequently, we evaluated the effectiveness of peptides, aliphatics, and small molecules derived from Gecko using CCK-8 and 3D tumor spheroid assays. The activities of peptides S1-S4 were further examined through these experiments. Finally, we screened, synthesized, and investigated five potential peptides for their pharmacodynamics in the CCK-8 assay and in the in-situ GC model mice.

Results: The Gecko can inhibit the formation of blood vessels in the tumor microenvironment, providing a localized treatment for GC. The peptide components significantly inhibit vascular endothelial cells and impede the formation of new blood vessels, with the S2 peptide sections (0.3 KD - 3 KD) demonstrating the most potent inhibitory activity against angiogenesis. One of the active peptides effectively suppresses the growth of in-situ GC in nude mice through angiogenesis inhibition and also modulates immunity, all while exhibiting excellent biosafety.

Conclusions: We have achieved a significant breakthrough in the local treatment of GC using Gecko. Through pharmacodynamic experiments and a systematic process of isolation and identification, we identified the most effective anti-GC ingredients of Gecko, based on their mechanisms of inhibiting vascular endothelial cells and promoting anti-angiogenesis. Furthermore, we synthesized a lead peptide that demonstrates promising therapeutic efficacy and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.119156DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
12
gekko swinhonis
8
swinhonis guenther
8
gastric cancer
8
gecko based
8
formation blood
8
blood vessels
8
endothelial cells
8
gecko
7
unveiling potent
4

Similar Publications

Understanding the Importance of the Small Artery Media-Lumen Ratio: Past and Present.

Basic Clin Pharmacol Toxicol

February 2025

Department of Biomedicine, Aarhus University, Aarhus, Denmark.

The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Dysregulated autoantibodies targeting AGTR1 are associated with the accumulation of COVID-19 symptoms.

NPJ Syst Biol Appl

January 2025

BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.

Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.

View Article and Find Full Text PDF

Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging.

Vascul Pharmacol

January 2025

Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy. Electronic address:

The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!