Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China.

J Hazard Mater

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Longhu Laboratory, Zhengzhou, Henan, China. Electronic address:

Published: November 2024

Although previous studies using phenotypic or metagenomic approaches have revealed the patterns of antibiotic resistance genes (ARGs) in hospital effluents in local regions, limited information is available regarding the antibiotic resistome and plasmidome in human pathogenic bacteria in hospital effluents of megacity in China. To address this knowledge gap, we analyzed effluent samples from 166 hospitals across 13 geographical districts in Shanghai, China, using both cultivation-based approaches and metagenomics. A total of 357 strains were isolated from these samples, with the predominant species being Escherichia coli (n = 61), Aeromonas hydrophila (n = 57), Klebsiella pneumoniae (n = 48), and Aeromonas caviae (n = 42). Those identified indicator bacteria were classified into biosafety level 1 (BSL-1, 60 %) and BSL-2 (40 %). We identified 1237 ARG subtypes across 22 types, predominantly including beta-lactam, tetracycline, multidrug, polymyxin, and aminoglycoside resistance genes, using culture-enriched phenotypic metagenomics. Mobile genetic elements such as plasmids, transposons (tnpA), integrons (intI1), and insertion sequences (IS91) were abundant. We recovered 135 plasmids classified into mobilizable (n = 94) and non-mobilizable (n = 41) types. Additionally, 80 metagenome-assembled genomes (MAGs) were reconstructed from the hospital effluents for the assessment of ARG transmission risks, including genes for last-line antibiotics such as bla, bla, bla, and mcr. This study is the first to comprehensively characterize and assess the risk of antimicrobial resistance levels and plasmidome in the hospital effluents of China's megacity, providing city-wide surveillance data and evidence to inform public health interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136641DOI Listing

Publication Analysis

Top Keywords

hospital effluents
20
resistance genes
12
antibiotic resistance
8
pathogenic bacteria
8
shanghai china
8
bla bla
8
hospital
5
effluents
5
deciphering antibiotic
4
resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!