Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum.

Plant Physiol Biochem

Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * Analysis of the genetic mechanisms showed mutations in the acetolactate synthase (ALS) enzyme and various ALS gene copies contributing to this resistance.
  • * The research also highlighted potential strategies to reverse resistance, including the use of specific inhibitors, which could help manage resistant weed populations better.

Article Abstract

Combining imidazolinone-tolerant wheat with imazamox presents an effective solution to combat weed resistance. However, Lolium multiflorum, a troublesome resistant weed infesting wheat fields, may have developed resistance to imazamox, and the potential resistance mechanisms are intriguing. In this study, we explored the susceptibility of L. multiflorum to imazamox and investigated the resistance mechanisms, including the contribution of the target enzyme acetolactate synthase (ALS) to resistance and the presence of non-target-site resistance (NTSR). Eight L. multiflorum populations suspected of being resistant to imazamox were collected, and six populations exhibited resistance, ranging from 2.45-fold to 16.32-fold. The LmALS1 gene from susceptible population D3 plants and multiple copies of the LmALS gene (LmALS1, LmALS2, LmALS2α, LmALS3, LmALS3α, LmALS3β) from resistant populations D5 and D8 plants were separately amplified. Two mutations (Pro/Gln197 to Thr, Trp574 to Leu) were found in LmALS1 in the resistant populations. Compared to D3, LmALS1 was overexpressed in D5 but not in D8. The presence of LmALS1 mutants (LmALS1-Thr197 and LmALS1- Leu574), along with LmALS2, LmALS3, and their subunits, contribute to the resistance phenotype by increasing bonding energies, weakening hydrogen bonds, or decreasing protein binding pocket volumes and surface area. Additionally, D5 and D8 populations exhibited multiple resistance (>40-fold) to three other ALS inhibitors: pyroxsulam, flucarbazone-sodium, and mesosulfuron-methyl. Pre-treatment with malathion and 4-chloro-7-nitrobenzoxadiazole (cytochrome P450 monooxygenase and glutathione S-transferase inhibitors respectively) reversed the resistance of the D8 population and partially reversed the resistance of the D5 population to imazamox. This study characterizes ALS genes and extends our knowledge into the ALS resistance mechanisms involved in L. multiflorum. It also deepens our understanding of the complex diversification resistance mechanisms, thereby facilitating advances in weed resistance management strategies in wheat fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109324DOI Listing

Publication Analysis

Top Keywords

resistance mechanisms
20
resistance
15
acetolactate synthase
8
lolium multiflorum
8
weed resistance
8
wheat fields
8
als resistance
8
populations exhibited
8
resistant populations
8
reversed resistance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!