A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incorporating dynamic drainage supervision into deep learning for accurate real-time flood simulation in urban areas. | LitMetric

Incorporating dynamic drainage supervision into deep learning for accurate real-time flood simulation in urban areas.

Water Res

College of Water Sciences, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing, China.

Published: November 2024

Urban flooding has become a prevalent issue in cities worldwide. Urban flood dynamics differ significantly from those in natural watersheds, primarily because of the intricate drainage systems and the high spatial heterogeneity of urban surfaces, which pose considerable challenges for accurate and rapid flood simulation. In this study, an urban drainage-supervised flood model (UDFM) for urban flood simulation is proposed. The urban flood process is decoupled into drainage routing and surface flood inundation. On the basis of physical and deep learning drainage models, a hybrid module combining deep learning and dimensionality reduction algorithm is adopted to convert the 1D drainage overflow process into a high-resolution, spatiotemporal 2D pluvial flooding process. Compared with existing state-of-the-art surrogate models for rapid flood simulation, the UDFM more comprehensively and accurately represents the role of drainage systems in urban flood dynamics, providing high-resolution predictions of flood depth and velocity. When applied to a highly urbanized district in Shenzhen, UDFM-deep learning demonstrated real-time predictive capabilities and high accuracy, particularly in simulating flow velocity, with average Nash efficiency coefficients improved by 0.112 and 0.251 compared with those of a response surface model (RSM) and a low-fidelity model (LFM), respectively. These findings underscore the critical importance of drainage system overflow in urban surface flood simulations. The UDFM enhances accuracy, flexibility, interpretability, and extensibility without requiring additional physical model construction. This research introduces a novel hierarchical surrogate model structure for urban flood simulation, offering valuable insights for rapid flood warning and risk management in urban environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122816DOI Listing

Publication Analysis

Top Keywords

flood simulation
20
urban flood
20
flood
13
deep learning
12
rapid flood
12
urban
11
flood dynamics
8
drainage systems
8
surface flood
8
drainage
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!