Retinal pericytes are mural cells surrounding capillaries to maintain the integrity of blood-retina barrier and regulate vascular behaviors. Pericyte loss has been considered as the hallmark of diabetic retinopathy (DR), which is a major complication of diabetes and the leading cause of blindness in adults. However, the precise function of pericytes in regulating the retinal microenvironment and the underlying mechanism remains largely unknown. In this study, we observed a secretory phenotype of pericytes with elevated inflammatory cytokines in response to Interleukin-1β (IL-1β), a canonical inflammatory cytokine which significantly increases during the initial stages of diabetic retinopathy. This phenotype is also accompanied by reduced expression of adherent junction proteins and contractile proteins. Paracrine cytokines derived from pericytes further induce the chemotaxis of microglia cells and trigger detrimental changes in endothelial cells, including reduced expression of tight junction protein Occludin and increased apoptosis. Mechanically, the secretion potential in pericytes is partially mediated by Hes1/STAT3 signaling pathway. Moreover, co-injection of stattic, an inhibitor targeting STAT3 activation, could effectively attenuate IL-1β-induced retinal inflammation and microglial activation in retina tissues. Collectively, these findings demonstrate the potential of retinal pericytes as an initial inflammatory sensor prior to their anatomical pathological loss, via undergoing phenotypic changes and secreting paracrine factors to amplify local inflammation and damage endothelial cells in vitro. Furthermore, inhibition of STAT3 activation by inhibitors significantly ameliorates IL-1β-induced retinal inflammation, suggesting STAT3 in retinal pericytes as a promising target for alleviating DR and other IL-1β-induced ocular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.113611 | DOI Listing |
Cells
December 2024
Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
Functional cell death pathways are essential for normal ocular vascular development and tissue homeostasis. As our understanding of necrosis-based cell death pathways has expanded, the inclusion of regulated forms, including necroptosis, ferroptosis, and oxytosis, has occurred. Although the existence of these pathways is well described, our understanding of their role during vascular development and pathological neovascularization is very limited.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Front Cell Neurosci
December 2024
Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico.
Müller cells are the most abundant glial cells in the mammalian retina. Their morphology and metabolism enable them to be in close contact and interact biochemically and physically with almost all retinal cell types, including neurons, pericytes, endothelial cells, and other glial cells, influencing their physiology by releasing bioactive molecules. Studies indicate that Müller glial cells are the primary source of angiogenic growth factor secretion in the neuroretina.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
December 2024
Doheny Eye Institute, University of California, Los Angeles, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, USA.
Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability.
View Article and Find Full Text PDFCurr Biol
January 2025
Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:
The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!