Osteogenesis promotion on MC3T3 by micro-area potential difference (MAPD) on titanium alloy.

Biomed Mater

Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China.

Published: December 2024

The ability of osseointegration of implants is an important factor in ensuring the long-term stability of bone implants in their recipient sites. In this paper, Ti-M titanium alloys with different surface micro-area potential difference (MAPD) were prepared and the adhesion, proliferation, spreading, and differentiation behavior of osteoblasts (MC3T3) on the surface of Ti-M alloy were investigated in detail to reveal the effect of MAPD on cell compatibility and osteogenic differentiation. The results showed that the alloy with high MAPD facilitated bone differentiation, demonstrating that MAPD significantly enhanced the alkaline phosphatase activity and mineralization ability of osteoblasts, and upregulated the expression of osteogenic differentiation-related factors. It is suggested that it might be a strategy to promote the surface bioactivity of titanium alloy by adjusting the surface MAPD.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad98d7DOI Listing

Publication Analysis

Top Keywords

micro-area potential
8
potential difference
8
difference mapd
8
titanium alloy
8
mapd
6
osteogenesis promotion
4
promotion mc3t3
4
mc3t3 micro-area
4
mapd titanium
4
alloy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!