AI Article Synopsis

Article Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean ± SD age was 50.4 ± 10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927 ± 1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c < 7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P = .021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608742PMC
http://dx.doi.org/10.1097/MD.0000000000040684DOI Listing

Publication Analysis

Top Keywords

metformin response
12
effects genetic
8
genetic variants
8
newly diagnosed
8
type diabetes
8
patients t2dm
8
saudi patients
8
study included
8
hba1c levels
8
metformin
6

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Traditional pulp-capping materials like mineral trioxide aggregate (MTA) offer excellent biocompatibility and sealing, but limitations such as prolonged setting time, low bioactivity, and high costs persist. Metformin, with its potential in craniofacial regeneration, could enhance dentin synthesis by targeting pulp cells. This study aimed to: (1) develop a calcium phosphate cement with chitosan (CPCC) with improved physio-mechanical properties; (2) incorporate metformin (CPCC-Met) to assess release; and (3) evaluate human dental pulp stem cells (hDPSCs) response.

View Article and Find Full Text PDF

Based on previously published US Diabetes Prevention Program (DPP) cost-effectiveness analyses (CEAs), metformin continues to be promoted as "cost-effective." We reviewed a 10-year CEA to assess this. Treatment alternatives included placebo, branded metformin and individual lifestyle modification.

View Article and Find Full Text PDF

This study aimed to evaluate the comparative efficacy of Myo-inositol (MI) and D-chiro-inositol (DCI) with metformin in enhancing ovarian function, promoting ovulation, and reducing perceived stress in patients with polycystic ovary syndrome (PCOS). Women with PCOS were identified using the Androgen Excess Society's criteria, and 60 participants were enrolled and divided equally into two groups. One group received a 40:1 ratio of MI plus DCI, while the other received metformin for a 12-week period.

View Article and Find Full Text PDF

Non-antibiotic pharmaceuticals are toxic against Escherichia coli with no evolution of cross-resistance to antibiotics.

NPJ Antimicrob Resist

April 2024

Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent released by manufacturing facilities. In addition to antibiotics, pharmaceutical plants also produce non-antibiotic pharmaceuticals, both the active ingredients and other components of the formulations. The effect of these on the surrounding microbial communities is less clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!