AI Article Synopsis

  • Triboelectric nanogenerators (TENG) are innovative devices that convert mechanical energy into electric power, utilizing contact electrification and electrostatic induction.
  • They can be utilized for high-entropy energy harvesting, self-powered sensors, and blue energy applications.
  • The text also discusses educational efforts, highlighting various technological products linked to TENG developed through a scientific education initiative called Maxwell Science+.

Article Abstract

Triboelectric nanogenerator (TENG) has become a promising option for high-entropy energy harvesting and self-powered sensors because of their ability to combine the effects of contact electrification and electrostatic induction to effectively convert mechanical energy into electric power or signals. Here, the theoretical origin of TENG, strategies for high-performance TENG, and its applications in high-entropy energy, self-powered sensors, and blue energy are comprehensively introduced on the basis of the fundamental science and principle of TENG. Besides, a series of work in popular science education for TENG that includes numerous scientific and technological products from our science education base, Maxwell Science+, is emphatically introduced. This topic provides an angle and notable insights into the development of TENG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606449PMC
http://dx.doi.org/10.1126/sciadv.ads2291DOI Listing

Publication Analysis

Top Keywords

high-entropy energy
12
self-powered sensors
12
triboelectric nanogenerator
8
energy self-powered
8
science education
8
teng
6
energy
5
nanogenerator high-entropy
4
sensors popular
4
popular education
4

Similar Publications

High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.

View Article and Find Full Text PDF

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.

View Article and Find Full Text PDF

Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!