A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artemin molecular chaperone from improves tolerance of to abiotic stress. | LitMetric

Artemin molecular chaperone from improves tolerance of to abiotic stress.

Funct Plant Biol

Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran.

Published: November 2024

AI Article Synopsis

  • Artemia is a microcrustacean known for its embryos' ability to withstand extreme conditions, thanks in part to a protective protein called artemin.
  • Researchers cloned the artemin gene and introduced it into Arabidopsis thaliana to study its impact on heat stress tolerance.
  • Results showed that transgenic plants with the artemin gene had improved germination rates, root growth, and stress-related gene expression, indicating enhanced heat stress resistance compared to wild-type plants.*

Article Abstract

Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP24208DOI Listing

Publication Analysis

Top Keywords

heat stress
20
molecular chaperone
8
transgenic lines
8
compared wild-type
8
stress
6
artemin
5
heat
5
artemin molecular
4
chaperone improves
4
improves tolerance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!