Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP24208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!