Kinetic study of mineral oil removal from wastewater by the sono-electrochemical process.

Water Sci Technol

Faculty of Civil Engineering, University of Zagreb, Kaciceva 26, Zagreb, Croatia.

Published: November 2024

Chemical kinetics can be a useful tool for determining the optimal operating time of electrochemical processes. The main objective of the study was to determine the mineral oil removal rate by sono-electrochemical treatment. In this study, zero-, first-, and second-order kinetic models were used to determine the reaction rate of mineral oil removal with the sono-electrochemical process. The reaction rate experiments were conducted under the following optimal conditions: 8 min of treatment time, a current density of 53.1 A/m, and a flow rate of 0.23 L/s. It was found that the changes in mineral oil concentrations follow second-order kinetics with a coefficient of determination of 0.9732. The mineral oil removal efficiency was 94.4%. This study concludes that sono-electrochemical process could be a promising technology for the removal of mineral oil from wastewater, and that the mineral oil removal rate can be determined by chemical kinetics. The results obtained may be useful for the optimization of the sono-EC process and reactor design.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2024.370DOI Listing

Publication Analysis

Top Keywords

mineral oil
28
oil removal
20
sono-electrochemical process
12
chemical kinetics
8
removal rate
8
reaction rate
8
mineral
7
oil
7
removal
6
rate
5

Similar Publications

The aim of the work was to study the effect of additive concentration on changes in the adhesive and cohesive strength of bitumen. To evaluate the effectiveness of modifiers in the composition of binary and triple bitumen systems in relation to mineral fillers of two grades, the method of determination of the adhesive efficiency and thermodynamic calculations of adhesion and cohesion work were used. The following compounds were used as additives: synthesized from the oil refining waste and (waste sealing liquid).

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

As gravity exploration technology advances, gravity gradient measurement is becoming an increasingly important method for gravity detection. Airborne gravity gradient measurement is widely used in fields such as resource exploration, mineral detection, and oil and gas exploration. However, the motion and attitude changes of the aircraft can significantly affect the measurement results.

View Article and Find Full Text PDF

Asian citrus psyllid (ACP), (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices.

View Article and Find Full Text PDF

Wood has a number of undesirable inherent properties that limit its ability to be used in a wider range of applications. For this reason, in this study, copper-montmorillonite nanoparticles were prepared from natural biomass tung oil and the natural mineral montmorillonite by the ion exchange method. Modified wood with tung oil intercalated with copper-montmorillonite was prepared by a simple and environmentally friendly impregnation and natural curing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!