To explore the impact of amygdalin on the proliferation, migration, and invasion of human endometrial stromal cells (HESCs) and the possible underlying mechanism. HESCs were incubated with 50, 100, and 200 µg/mL of amygdalin. The malignant activities of HESCs were analyzed by functional experiments. The activation of the Wnt/β-catenin signaling was tested using TOP/FOPFlash. The mRNA expressions of genes were validated by qRT-PCR. The endometriosis (EMS) mouse model was induced and the impact of amygdalin on the growth of ectopic endometrial lesions were assessed. It was observed that amygdalin markedly lessened the malignant activities of HESCs in a dose-dependent way (p < 0.05). Amygdalin dose-dependently declined the activation of TOPFlash and mRNA levels of β-catenin, cyclinD1 and c-Myc in HESCs (p < 0.05). Additionally, the increasing dose of amygdalin progressively inhibited the growth of ectopic endometrial lesions in EMS mouse model (p < 0.05). We reached a conclusion that amygdalin could inhibit the malignant activities of HESCs and alleviate EMS, which was related to Wnt/β-catenin signaling activation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-024-10301-6DOI Listing

Publication Analysis

Top Keywords

endometrial stromal
8
proliferation migration
8
migration invasion
8
wnt/β-catenin signaling
8
impact amygdalin
8
malignant activities
8
activities hescs
8
amygdalin
5
amygdalin inhibits
4
inhibits endometrial
4

Similar Publications

Understanding human endometrial dynamics in the establishment of endometrial receptivity remains a challenge, which limits early diagnosis and treatment of endometrial-factor infertility. Here, we decode the endometrial dynamics of fertile women across the window of implantation and characterize the endometrial deficiency in women with recurrent implantation failure. A computational model capable of both temporal prediction and pattern discovery is used to analyze single-cell transcriptomic data from over 220,000 endometrial cells.

View Article and Find Full Text PDF

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

Endometriosis (EMS) is a chronic inflammatory disease frequently associated with infertility. N6-methyladenosine (m6A) methylation, the most common form of methylation in eukaryotic mRNAs, has gained attention in the study of female reproductive diseases, including EMS and infertility. This study aimed to investigate the role of m6A regulators in EMS-related infertility.

View Article and Find Full Text PDF

Introduction: Extrauterine recurrent metastasis of Low-grade endometrial stromal sarcoma (LG-ESS) to major blood vessels is largely rare with few reported cases.

Case: Herein, we present a case of a 51-year-old female with recurrent LG-ESS that has metastasized after 12 years to the inferior vena cava (IVC) and extended into the right atrium and common iliac veins. Computed tomography showed an intracardiac larger thrombus within the right atrium extending into the inferior vena cava and common iliac veins.

View Article and Find Full Text PDF

Objective: Deep endometriosis is now referred to as adenomyosis externa, whereas adenomyosis is once known as endometriosis interna. Lysine-specific histone demethylase 1A (KDM1A, commonly LSD1) is a lysine demethylase that targets histone and non-histone proteins. This study aimed to assess how KDM1A affects the migration, invasion, and proliferation of adenomyosis-derived endometrial stromal cells (ESCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!