Wastewater treatment plant (WWTP) influent sampling is commonly used in wastewater-based disease surveillance to assess the circulation of pathogens in the population aggregated in a catchment area. However, the signal can be lost within the sewer network due to adsorption, degradation, and dilution processes. The present work aimed to investigate the dynamics of SARS-CoV-2 concentration in three sub-catchments of the sewer system in the city of Hildesheim, Germany, characterised by different levels of urbanisation and presence/absence of industry, and to evaluate the benefit of sub-catchment sampling compared to WWTP influent sampling. Our study shows that sampling and analysis of virus concentrations in sub-catchments with particular settlement structures allows the identification of high concentrations of the virus at a local level in the wastewater, which are lower in samples collected at the inlet of the treatment plant covering the whole catchment. Higher virus concentrations per inhabitant were found in the sub-catchments in comparison to the inlet of the WWTP. Additionally, sewer sampling provides spatially resolved concentrations of SARS-CoV-2 in the catchment area, which is important for detecting local high incidences of COVID-19.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2024.301DOI Listing

Publication Analysis

Top Keywords

sewer system
8
wastewater-based disease
8
disease surveillance
8
treatment plant
8
wwtp influent
8
influent sampling
8
catchment area
8
virus concentrations
8
sampling
6
sewer
4

Similar Publications

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data.

View Article and Find Full Text PDF

Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.

View Article and Find Full Text PDF

Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.

View Article and Find Full Text PDF

Wastewater-based monitoring of antipyretics use during COVID-19 outbreak in China and its associated ecological risks.

Environ Res

December 2024

Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, PR China. Electronic address:

At the end of 2022, a sudden policy shift in China triggered an unprecedented COVID-19 outbreak that led to a dramatic increase in the consumption of antipyretics. In this study, the occurrence of the two most commonly used antipyretics (ibuprofen and paracetamol) and their metabolites were analyzed in the wastewater of nine major cities in China, covering the periods before, during, and after the policy change. The remarkable surge after the policy change for ibuprofen and paracetamol reached 67 times (in Nanning) and 311 times (in Lanzhou) compared to pre-pandemic levels, respectively.

View Article and Find Full Text PDF

Antimicrobial risk assessment-Aggregating aquatic chemical and resistome emissions.

Water Res

December 2024

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; SWING - Department of Built Environment, Oslo Metropolitan Uni., St Olavs Plass, Oslo 0130, Norway. Electronic address:

Urban water systems receive and emit antimicrobial chemicals, resistant bacterial strains, and resistance genes (ARGs), thus representing "antimicrobial hotspots". Currently, regional environmental risk assessment (ERA) is carried out using drug consumption data and threshold concentrations derived based on chemical-specific minimum inhibitory concentration values. A legislative proposal by the European Commission released in 2022 addresses the need to include selected ARGs besides the chemical concentration-based ERAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!