In Situ Welding Ionic Conductive Breakpoints for Highly Reversible All-Solid-State Lithium-Sulfur Batteries.

J Am Chem Soc

Shenzhen Geim Graphene Center, Shenzhen Key Laboratory for Graphene-based Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Published: December 2024

Poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur batteries (SSLSBs) have garnered considerable interest owing to their impressive energy density and high safety. However, the dissolved lithium polysulfide (LiPS) together with sluggish reaction kinetics disrupts the electrolyte network, bringing about ionic conductive breakpoints and severely limiting battery performance. To cure this, we propose an in situ welding strategy by introducing phosphorus pentasulfide (PS) as the welding filler into PEO-based solid cathodes. PS can react with LiPS to form ion-conducting lithium polysulfidophosphate (LSPS), which suppresses the interaction with PEO and in situ weld breakpoints within the ionic conductive network. Of interest, LSPS also shows another function, that is, to catalyze sulfur redox reactions by decreasing the activation energy of sulfur reduction reaction from 0.87 to 0.75 eV, mitigating the shuttle effect. The in situ welding strategy helps the assembled SSLSB to feature exceptional cycling stability and a high energy density of up to 358 Wh·kg due to the high sulfur utilization. Our findings pave an avenue for practical high-performance SSLSBs with a novel welding filler for in situ welding of ionic conductive network.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c13126DOI Listing

Publication Analysis

Top Keywords

situ welding
16
ionic conductive
16
welding ionic
8
conductive breakpoints
8
lithium-sulfur batteries
8
energy density
8
welding strategy
8
welding filler
8
conductive network
8
situ
5

Similar Publications

Forging additive hybrid manufacturing integrated the high efficiency of forging and the great flexibility of additive manufacturing, which has significant potential in the construction of reactor pressure vessels (RPVs). In the components, the heat-affected zone (HAZ, also called as bonding zone) between the forged substrate zone and the arc deposition zone was key to the final performance of the components. In this study, the Mn-Mo-Ni welding wire was deposited on the 16MnD5 substrate with a submerged arc heat source.

View Article and Find Full Text PDF

In-situ growing carbon nanotubes reinforced highly heat dissipative three-dimensional aluminum framework composites.

J Colloid Interface Sci

December 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

The demand for lightweight heat dissipation design in highly miniaturized and portable electronic devices with high thermal density is becoming increasingly urgent. Herein, highly thermal conductive carbon nanotubes (CNTs) reinforced aluminum foam composites were prepared by catalyst chemical bath and subsequent in-situ growth approach. The dense CNTs show the intertwined structure features and construct high-speed channels near the surface of the skeletons for efficient thermal conduction, promoting the transport efficiency of heat flow.

View Article and Find Full Text PDF

Water scarcity is a global concern that needs addressing through alternative sources. One of the approaches is the use of reclaimed water for irrigation. However, the presence of halogenated compounds and heavy metals in reclaimed water poses significant food safety threats.

View Article and Find Full Text PDF
Article Synopsis
  • Mn chalcogenide cathodes have potential for high-capacity in aqueous Zinc-ion batteries (AZIBs) but struggle with issues like Mn dissolution and chalcogenide decomposition, which affect performance and raise environmental concerns.
  • The incorporation of reduced graphene oxide (rGO) helps stabilize MnSe nanoparticles, enhancing the cathode's capacity, cycle life, and stability while preventing Mn and Se loss during operation.
  • Advanced calculations also reveal that Se-doped rGO has a strong attraction to Mn and Se, improving structural stability and minimizing unwanted reactions, indicating a promising direction for eco-friendly AZIBs.
View Article and Find Full Text PDF

In Situ Welding Ionic Conductive Breakpoints for Highly Reversible All-Solid-State Lithium-Sulfur Batteries.

J Am Chem Soc

December 2024

Shenzhen Geim Graphene Center, Shenzhen Key Laboratory for Graphene-based Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Poly(ethylene oxide) (PEO)-based solid-state lithium-sulfur batteries (SSLSBs) have garnered considerable interest owing to their impressive energy density and high safety. However, the dissolved lithium polysulfide (LiPS) together with sluggish reaction kinetics disrupts the electrolyte network, bringing about ionic conductive breakpoints and severely limiting battery performance. To cure this, we propose an in situ welding strategy by introducing phosphorus pentasulfide (PS) as the welding filler into PEO-based solid cathodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!