Slow Metabolism-Driven Amplification of Hepatic PPARγ Agonism Mediates Benzbromarone-Induced Obesity-Specific Liver Injury.

Adv Sci (Weinh)

The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.

Published: November 2024

Obesity and nonalcoholic fatty liver disease (NAFLD) are established risk factors for drug-induced liver injury (DILI). The previous study demonstrates that benzbromarone (BBR), a commonly prescribed pharmaceutical agent for managing gout and hyperuricemia, exacerbates hepatic steatosis and liver injury specifically in obese individuals. However, the precise mechanism underpinning this adverse effect remains incompletely elucidated. Given the significance of BBR and its analogs in anti-gout/hyperuricemia drug discovery, elucidating the mechanism by which BBR exacerbates obesity-specific DILI warrants further investigation. In this study, through a combined multi-omics, pharmacological, and pharmacokinetic approaches, it is found that BBR-induced obesity-specific DILI is primarily through the potentiation of peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Further in vivo and in vitro pharmacokinetic analyses reveal that obese db/db mice exhibited a diminished capacity to metabolize BBR in their livers. This reduction leads to prolonged retention of BBR, subsequently resulting in chronic and sustained hepatic PPARγ agonism. This study demonstrates that a slow metabolism-driven amplification of hepatic PPARγ agonism mediates BBR-induced obesity-specific hepatic steatosis and subsequent DILI, which also emphasizes the importance of the reduced hepatic drug metabolism capacity in patients with obesity or pre-existing NAFLD in both clinical practice and drug discovery processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202409126DOI Listing

Publication Analysis

Top Keywords

hepatic pparγ
12
pparγ agonism
12
liver injury
12
slow metabolism-driven
8
metabolism-driven amplification
8
amplification hepatic
8
agonism mediates
8
study demonstrates
8
hepatic steatosis
8
drug discovery
8

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

Thio-ProTide strategy: A novel HS donor-drug conjugate (DDC) alleviates hepatic injury innate lysosomal targeting.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.

Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.

View Article and Find Full Text PDF

Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway.

Infect Drug Resist

January 2025

Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.

Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.

View Article and Find Full Text PDF

Background And Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare vascular liver disorder characterised by specific histological findings in the absence of cirrhosis, which is poorly understood in terms of pathophysiology. While elevated hepatic copper content serves as diagnostic hallmark in Wilson disease (WD), hepatic copper content has not yet been investigated in PSVD.

Methods: Patients with a verified diagnosis of PSVD at the Medical University of Vienna and available hepatic copper content at the time of diagnosis of PSVD were retrospectively included.

View Article and Find Full Text PDF

Background: Plasma AST and ALT may reflect the nonalcoholic fatty liver disease (NAFLD) severity and have been associated with the risk of MetS in middle- or old-aged individuals.

Aims: This study aimed to examine the associations of plasma hepatic aspartate and alanine transaminases (AST and ALT) levels with incident metabolic syndrome (MetS) in young adults, which have not been verified before.

Objective: The goal of this study was to identify the association between plasma hepatic transaminases and the incidence of new-onset MetS among young adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!