The ratiometric sensing strategy, which uses dual-signal output, drastically compensates for the background noise and interference from the detection environment, compared to the sensing methods that rely on a single-signal output. However, the stability of the reference signal has become the primary challenge in constructing a ratiometric detection sensor. Therefore, in order to achieve stable ratiometric signal sensing, methylene blue (MB) was encapsulated in the UiO-66-NH framework and printed as a reference signal onto a screen-printed carbon electrode (SPCE), facilitating the precise detection of miR-21-5p. Subsequently, based on the ultra-sensitive detection mechanism of catalytic hairpin assembly (CHA), the combination of miR-21-5p with H sequence on the Au-deposited SPCE triggered the loop-open of H1. After that, ferrocene-labeled H (H-Fc) and H-Fc sequences were sequentially added to form a stable "T-shaped" structure, and miR-21-5p was released into the next cycle. Thus, the detection of miR-21-5p was quantified by the current ratio of Fc to MB, obtaining an ultra-low detection limit of 2.7 fM. This ratiometric sensing strategy based on SPCE offers a promising pathway for highly sensitive sensing platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an01302fDOI Listing

Publication Analysis

Top Keywords

carbon electrode
8
ratiometric sensing
8
sensing strategy
8
reference signal
8
detection mir-21-5p
8
detection
6
ratiometric
5
mir-21-5p
5
sensing
5
mechanically stabilized
4

Similar Publications

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb/Cd.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:

In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.

View Article and Find Full Text PDF

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!