Ground-level ozone pollution poses significant risks to ecosystems and human health and requires effective control measures. This study focused on the monolithic ozone degradation catalyst based on powdered α-MnO and comprehensively investigated its catalytic performance, moisture resistance, and stability. The monolithic catalyst achieved the optimal catalytic activity with an ozone conversion rate of 99% after being calcined at 400 °C for 3 hours. The detailed characterization of the catalyst properties at pH = 1, 4, and 7 revealed the adverse effects of residual acid ions on the catalyst activity. The catalyst at pH = 7 had more oxygen vacancies, which was related to the reduction of sulfate ion residues and the exposure of more active sites during the washing process. At pH = 7 and a space velocity of 900 000 h, the conversion rates of α-MnO to 18 ppm ozone reached 100% and 95% within 3 hours under 90% relative humidity and dry conditions, respectively. In addition, the monolithic catalyst exhibited significant moisture resistance and performed well in continuous alternating humidity cycle tests and sustained high humidity. It still maintained 90% ozone decomposition efficiency after 3 hours of testing under high humidity conditions. Meanwhile, the α-MnO monolithic catalyst showed excellent stability, with an ozone conversion rate exceeding 99% during the 50 - hour test period. These findings highlight the great potential of the α-MnO monolithic catalyst in ozone removal applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4an01095g | DOI Listing |
Data Brief
December 2024
Yueyang Xingchang Petrochemical Co., Ltd., Yueyang 414000, PR China.
Under industrial conditions, efficient catalytic oxidation of Chlorinated volatile organic compounds is an important challenge, not only because of the poisonous effect of Chlorinated volatile organic compounds on catalysts, but also because of their high reaction temperature, which has an adverse impact on industrialization. In a recent article ( Ru/CeO ) [1], we developed a strategy for preparing a simple and efficient monolithic catalyst for the catalytic combustion of chlorobenzene. Ru/CeO was loaded on the industrial support cordierite by a Sol-gel method.
View Article and Find Full Text PDFNanoscale
December 2024
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.
View Article and Find Full Text PDFLangmuir
December 2024
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Analyst
December 2024
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
Ground-level ozone pollution poses significant risks to ecosystems and human health and requires effective control measures. This study focused on the monolithic ozone degradation catalyst based on powdered α-MnO and comprehensively investigated its catalytic performance, moisture resistance, and stability. The monolithic catalyst achieved the optimal catalytic activity with an ozone conversion rate of 99% after being calcined at 400 °C for 3 hours.
View Article and Find Full Text PDFMolecules
November 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
NiFe (oxy)hydroxide has been widely used as a benchmark anodic catalyst for oxygen evolution reactions (OERs) in alkaline water electrolysis devices; however, the energy saving actually takes contributions from both the anodic OER and cathodic hydrogen evolution reaction (HER). In this work, we observe the catalytic promotion upon the in situ-derived NiFe (oxy)hydroxide from the NiFe alloy monolithic electrode and also point out that the coupled nickel cathode is contaminated, leading to the loss of HER activity and a reduction in overall efficiency. It is found that Ni and Fe cations are inevitably detached from the anode into the electrolyte and electrodeposited on the nickel cathode after the three-month industrial simulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!