High valence MnO as an aqueous zinc ion battery cathode prepared using a secondary hydrothermal method.

Dalton Trans

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P.R. China.

Published: November 2024

Aqueous zinc-ion batteries (AZIBs) have emerged as promising energy storage systems due to their inherent safety and high capacity, with manganese oxides attracting attention for their cost-effectiveness and environmental compatibility. However, the poor cycling stability of manganese-based oxides, primarily due to Jahn-Teller distortions caused by Mn, limits their practical applications. Herein, a high valence MnO (H-MnO) material was prepared a simple secondary hydrothermal method, yielding an increased average manganese valence from 3.31 to 3.89. A Zn/H-MnO aqueous battery that utilized H-MnO as a cathode achieves an exceptional capacity of 420 mA h g at 0.1 A g and retains a capacity of 92.6% after 900 cycles at 2.0 A g. The structural transformation of the electrode material and changes in the elemental content during charging and discharging reveal that the H-MnO electrode undergoes a chemical transformation mechanism during these processes. This work demonstrates that increasing the average manganese valence state is a critical strategy for improving both capacity and cycling stability in manganese-based AZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02724hDOI Listing

Publication Analysis

Top Keywords

high valence
8
valence mno
8
secondary hydrothermal
8
hydrothermal method
8
cycling stability
8
stability manganese-based
8
average manganese
8
manganese valence
8
mno aqueous
4
aqueous zinc
4

Similar Publications

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

The advantages of lexicon-based sentiment analysis in an age of machine learning.

PLoS One

January 2025

Department of Political Science, Middlebury College, Middlebury, Vermont, United States of America.

Assessing whether texts are positive or negative-sentiment analysis-has wide-ranging applications across many disciplines. Automated approaches make it possible to code near unlimited quantities of texts rapidly, replicably, and with high accuracy. Compared to machine learning and large language model (LLM) approaches, lexicon-based methods may sacrifice some in performance, but in exchange they provide generalizability and domain independence, while crucially offering the possibility of identifying gradations in sentiment.

View Article and Find Full Text PDF

Mechanistic Understanding of the pH-Dependent Oxygen Reduction Reaction on the Fe-N-C Surface: Linking Surface Charge to Adsorbed Oxygen-Containing Species.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!