Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) have emerged as a promising next-generation PV technology that is known to degrade under thermal stresses, especially at temperatures above 100 °C. In this study, we determine degradation modes during lamination and engineer internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. PSCs with self-assembled monolayers at the ITO interface and SnO layers deposited by atomic layer deposition at the electron extraction side of the device endured vacuum lamination at conditions typical of commercial PV processes (150 °C) without degradation. This work demonstrates that perovskite PV can be integrated into the existing module lamination process, enabling future single- and multijunction modules utilizing perovskite absorbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600410PMC
http://dx.doi.org/10.1021/acsaem.4c02567DOI Listing

Publication Analysis

Top Keywords

vacuum lamination
16
solar cells
12
perovskite solar
8
cells vacuum
8
internal diffusion
8
diffusion barriers
8
150 °c
8
lamination
6
vacuum
5
reducing thermal
4

Similar Publications

Effects of Preformed Composition and Pore Size on Microstructure and Properties of SiC/SiC Composites via Reactive Melt Infiltration.

Materials (Basel)

November 2024

Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

This study investigated the influence of preformed composition and pore size on the microstructure and properties of SiC/SiC composites fabricated via reactive melt infiltration (RMI). The process began with the impregnation of SiC fiber cloth with phenolic resin, followed by lamination and pyrolysis. Subsequent steps included further impregnations with phenolic resin, SiC slurry, and carbon black slurry, each followed by additional pyrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the impact of different carbon nanostructure reinforcements and nitinol shape memory alloy (SMA) wire on the vibration behavior of a five-layer sandwich plate with a foam core, aiming to optimize stiffness and weight for sensitive industries.
  • It highlights how various reinforcements like carbon nanotubes, nanorods, and graphene platelets can significantly enhance the mechanical properties, with graphene showing the most substantial improvement in Young's modulus.
  • The research also introduces a novel construction method for the five-layer model using a vacuum pump, offering a more efficient alternative to traditional manual methods and facilitating a thorough experimental examination of its properties.
View Article and Find Full Text PDF

Reducing Thermal Degradation of Perovskite Solar Cells during Vacuum Lamination by Internal Diffusion Barriers.

ACS Appl Energy Mater

November 2024

National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.

Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells.

View Article and Find Full Text PDF

Chemically Bonded Graphene Oxide/Covalent Organic Framework Nanosheets as Robust Membranes for Fast Desalination.

ACS Appl Mater Interfaces

December 2024

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Graphene oxide (GO) is widely used to prepare 2D laminar separation membranes because of its single atomic thickness and good processability. However, due to the tortuous transport path and excessive swelling effect, it is difficult to improve permeability, salt rejection, and stability of GO membranes simultaneously. Herein, we chemically laminated GO with covalent organic framework nanosheets (CONs) to fabricate membranes for fast and stable desalination.

View Article and Find Full Text PDF

A Quasi-Solid-State Polymer Lithium-Metal Battery with Minimal Excess Lithium, Ultrathin Separator, and High-Mass Loading NMC811 Cathode.

ACS Appl Energy Mater

November 2024

Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Solid-state batteries with lithium metal anodes are considered the next major technology leap with respect to today's lithium-ion batteries, as they promise a significant increase in energy density. Expectations for solid-state batteries from the automotive and aviation sectors are high, but their implementation in industrial production remains challenging. Here, we report a solid-state lithium-metal battery enabled by a polymer electrolyte consisting of a poly(DMADAFSI) cationic polymer and LiFSI in PyrFSI as plasticizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!