Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology.

JACS Au

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Published: November 2024

AI Article Synopsis

  • Biomolecular condensates exhibit viscoelastic properties that are crucial for their functions in cells, and understanding these properties can reveal how they are organized and behave in different physiological contexts.
  • Current methods for studying the viscoelastic behavior of these condensates are largely experimental and limited, prompting the need for better quantification techniques.
  • The study introduces a computational microrheology approach that utilizes a passive probe to analyze the viscoelasticity of intrinsically disordered proteins (IDPs), providing insights into how sequence variations impact their physical properties and functionalities.

Article Abstract

Many biomolecular condensates act as viscoelastic complex fluids with distinct cellular functions. Deciphering the viscoelastic behavior of biomolecular condensates can provide insights into their spatiotemporal organization and physiological roles within cells. Although there is significant interest in defining the role of condensate dynamics and rheology in physiological functions, the quantification of their time-dependent viscoelastic properties is limited and is mostly done through experimental rheological methods. Here, we demonstrate that a computational passive probe microrheology technique, coupled with continuum mechanics, can accurately characterize the linear viscoelasticity of condensates formed by intrinsically disordered proteins (IDPs). Using a transferable coarse-grained protein model, we first provide a physical basis for choosing optimal values that define the attributes of the probe particle, namely, its size and interaction strength with the residues in an IDP chain. We show that the technique captures the sequence-dependent viscoelasticity of heteropolymeric IDPs that differ in either sequence charge patterning or sequence hydrophobicity. We also illustrate the technique's potential in quantifying the spatial dependence of viscoelasticity in heterogeneous IDP condensates. The computational microrheology technique has important implications for investigating the time-dependent rheology of complex biomolecular architectures, resulting in the sequence-rheology-function relationship for condensates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600178PMC
http://dx.doi.org/10.1021/jacsau.4c00740DOI Listing

Publication Analysis

Top Keywords

dependence viscoelasticity
8
condensates computational
8
computational microrheology
8
biomolecular condensates
8
microrheology technique
8
condensates
6
sequence-encoded spatiotemporal
4
spatiotemporal dependence
4
viscoelasticity
4
viscoelasticity protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!