Over 90% of protein degradation in eukaryotic cells occurs through the ubiquitin-proteasome system (UPS). In this system, the ubiquitin protein can bind to a substrate on its own or it can form a chain with multiple ubiquitin molecules in a process called polyubiquitination. There are 8 different sites on ubiquitin at which polyubiquitin chains can be formed, the second most abundant of which, lysine-63 (K63), is independent of the degradation process, though this mark has rarely been studied in the brain or during learning-dependent synaptic plasticity. Recently, we found that knockdown of K63 polyubiquitination in the amygdala selectively impaired contextual fear memory formation in female, but not male, rats. It is unknown, however, whether the sex-specific requirement of K63 polyubiquitination occurs in other brain regions that are required for contextual fear memory formation, including the hippocampus. Here, we found that CRISPR-dCas13-mediated knockdown of K63 polyubiquitination in the hippocampus significantly enhanced contextual fear memory in both male and female rats, a result that is in striking contrast to what we observed in the amygdala for both sex-specificity and directionality. Using unbiased proteomics, we found that following fear conditioning K63 polyubiquitination was primarily decreased at target proteins in the hippocampus of both males and females. Importantly, the target proteins and downstream functional pathways influenced by K63 polyubiquitination changes diverged significantly by sex. Together, these data suggest that unlike what we previously reported in the amygdala, decreases in K63 polyubiquitination in the hippocampus are a critical regulator of memory formation in the hippocampus of both males and females.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.23650 | DOI Listing |
BMC Cancer
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.
View Article and Find Full Text PDFPLoS Pathog
January 2025
National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFCirc Res
January 2025
Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (H.J.).
Background: Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg/Mn-dependent 1B)-lysine63 (K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
Poly(ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DNA repair and genomic stability maintenance. However, the regulatory mechanisms governing PARP1 activity, particularly through deubiquitination, remain poorly elucidated. Using a deubiquitinase (DUB) library binding screen, we identified cylindromatosis (CYLD) as a bona fide DUB for PARP1 in breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!