Suppression of charge recombination caused by unfavorable grain boundaries (GBs) in polycrystalline thin films is essential for improving the optoelectronic performance of semiconductor devices. For emerging antimony selenide (SbSe) materials, the unique quasi-1D structure intensifies the dependence of GB properties on the grain size and orientation, which also increases the impact of defects related to grain structure on device performance. However, these characteristics pose significant challenges in the preparation of thin films. In this study, a novel annealing approach using ammonia-thiourea is developed mixed solution as the liquid medium (LM) to finely regulate the crystallization of SbSe films, resulting in micron-sized large grains with enhanced [hk1] orientation and fewer defects. Mechanistic studies indicate that the intermediate phase formed at the GBs promotes the growth of large grains. Moreover, LM creates a closed and uniform environment for thin-film annealing, suppressing the volatilization of Se and reducing the types of deep-level defects. Consequently, the film delivers a device efficiency of 9.28%, the highest efficiency achieved for SbSe solar cells fabricated via thermal evaporation. Hence, this study provides a facile and effective annealing method for controlling the crystallization of low-dimensional materials and offers valuable guidance for the development of chalcogenide materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202414082 | DOI Listing |
Small Methods
January 2025
School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, 52828, South Korea.
In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.
View Article and Find Full Text PDFPLoS One
January 2025
Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University (Ministry of Education & Hubei Province), Wuhan, Hubei, China.
This paper develops a finite element analysis model to investigate the seepage characteristics of cement sheaths, considering the flow properties of their porous medium. The model's applicability under various conditions was evaluated through grid sensitivity tests and model validation, indicating that it effectively captures the seepage behavior of cement sheaths with a reasonable degree of reliability. Key parameters, including cement sheath length, permeability, gap structure, pressure differential, and fluid properties, were analyzed using finite element methods to determine their impact on seepage flow.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Biomedical Engineering, Lund University, Lund SE-223 63, Sweden.
Isolation and characterization of circulating tumor cells (CTCs) present a noninvasive alternative to monitor disease progression in individual patients. However, the heterogeneous lineage specificity of CTCs makes it difficult to isolate and identify possible CTCs by a liquid biopsy. Better label-free methods for the isolation of viable CTCs are needed.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:
Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface.
View Article and Find Full Text PDFACS EST Air
January 2025
Environmental Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.
Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!