A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wire Electrochemical Machining of Multiscale Superhydrophobic Arrays with Specific Unit Shapes on Stainless Steel. | LitMetric

Wire Electrochemical Machining of Multiscale Superhydrophobic Arrays with Specific Unit Shapes on Stainless Steel.

Langmuir

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

Published: December 2024

The multiscale superhydrophobic array with a specific unit shape has a broader prospect for application in engineering materials, such as stainless steel (SS). However, the fabrication of the multiscale superhydrophobic array with a specific unit shape remains limited by several aspects, mainly including the complexity and controllability of multiscale integration of microstructures and arrays, the difficulties in obtaining specific unit shapes, and the low safety. Therefore, there is an urgent need for a relatively controllable, simple, and safe method to achieve a multiscale superhydrophobic array with a specific unit shape. Here, a safe and controllable method of integrating the array and microstructure into a multiscale superhydrophobic array is proposed by only wire electrochemical machining (WECM) in a harmless neutral electrolyte with controllable construction of different unit shapes. Here, first, the simulation and experiment of unit shapes by WECM is conducted to reduce the complexity of selecting parameters for different unit shapes; then, an integration of the microstructure and array is conducted; finally, hydrophobicity performances of multiscale superhydrophobic arrays are tested, including the drop loading test and drop impact test. The results show that multiscale superhydrophobic arrays by WECM exhibit excellent anti-intrusion performance and reduce solid-liquid contact time significantly, indicating only WECM can construct multiscale superhydrophobic arrays on SS with good controllability and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03991DOI Listing

Publication Analysis

Top Keywords

multiscale superhydrophobic
32
specific unit
20
unit shapes
20
superhydrophobic arrays
16
superhydrophobic array
16
array specific
12
unit shape
12
multiscale
9
wire electrochemical
8
electrochemical machining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!