The Hepatitis B core antigen (HBcAg) has been used as a carrier of several heterologous protein fragments based on its capacity to form virus-like particles (VLPs) and to activate innate and adaptive immune responses. In the present work, two chimeric proteins were designed as potential pancorona vaccine candidates, comprising the N- or C- terminal domain of SARS-CoV-2 nucleocapsid (N) protein fused to HBcAg. The recombinant proteins, obtained in E. coli, were named CN-1 and CND-1, respectively. The final protein preparations were able to form 10-25 nm particles, visualized by TEM. Both proteins were recognized by sera from COVID-19 convalescent donors; however, the antigenicity of CND-1 tends to be higher. The immunogenicity of both proteins was studied in Balb/C mice by intranasal route without adjuvant. After three doses, only CND-1 elicited a positive immune response, systemic and mucosal, against SARS-CoV-2 N protein. CND-1 was evaluated in a second experiment mixed with the CpG ODN-39 M as nasal adjuvant. The induced anti-N immunity was significantly enhanced, and the antibodies generated were cross-reactive with N protein from Omicron variant, and SARS-CoV-1. Also, an anti-N broad cellular immune response was detected in spleen, by IFN-γ ELISpot. The nasal formulation composed by CND-1 and ODN-39 M constitutes an attractive component for a second generation coronavirus vaccine, increasing the scope of S protein-based vaccines, by inducing mucosal immunity and systemic broad humoral and cellular responses against Sarbecovirus N protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606075PMC
http://dx.doi.org/10.1186/s12985-024-02583-9DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 nucleocapsid
8
vaccine candidates
8
immune response
8
protein
7
cnd-1
5
obtaining hbv
4
hbv core
4
core protein
4
protein vlps
4
vlps carrying
4

Similar Publications

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

BackgroundThe first Corona Monitoring Nationwide (RKI-SOEP) study (October 2020-February 2021) found a low pre-vaccine SARS-CoV-2 antibody seroprevalence (2.1%) in the German adult population (≥ 18 years).AimThe objective of this second RKI-SOEP (RKI-SOEP-2) study in November 2021-March 2022 was to estimate the prevalence of SARS-CoV-2-specific anti-spike and/or anti-nucleocapsid (anti-N) IgG antibodies (combined seroprevalence), past infection based on infection-induced seroprevalence (anti-N), and basic immunisation (at least two antigen contacts through vaccination or infection) in individuals aged ≥ 14 years.

View Article and Find Full Text PDF

Detection of the SARS-CoV-2 nucleoprotein by electrochemical biosensor based on molecularly imprinted polypyrrole formed on self-assembled monolayer.

Biosens Bioelectron

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania. Electronic address:

Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers.

View Article and Find Full Text PDF

People with immunocompromising conditions (IC) are at increased risk of severe COVID-19 and death. These individuals show weaker immunogenicity following vaccination than individuals without IC, yet immunogenicity after SARS-CoV-2 infection is poorly understood. To address this gap, the presence of infection-induced antibodies in sera following a positive COVID-19 test result was compared between patients with and without IC.

View Article and Find Full Text PDF

Detrimental Effects of Anti-Nucleocapsid Antibodies in SARS-CoV-2 Infection, Reinfection, and the Post-Acute Sequelae of COVID-19.

Pathogens

December 2024

Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.

Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies enhance subsequent viral infections rather than preventing them. Sub-optimal levels of neutralizing antibodies in individuals infected with dengue virus are known to be associated with severe disease upon reinfection with a different dengue virus serotype. For Severe Acute Respiratory Syndrome Coronavirus type-2 infection, three types of ADE have been proposed: (1) Fc receptor-dependent ADE of infection in cells expressing Fc receptors, such as macrophages by anti-spike antibodies, (2) Fc receptor-independent ADE of infection in epithelial cells by anti-spike antibodies, and (3) Fc receptor-dependent ADE of cytokine production in cells expressing Fc receptors, such as macrophages by anti-nucleocapsid antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!