A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epithelial differentiation of gingival mesenchymal stem cells enhances re-epithelialization for full-thickness cutaneous wound healing. | LitMetric

Epithelial differentiation of gingival mesenchymal stem cells enhances re-epithelialization for full-thickness cutaneous wound healing.

Stem Cell Res Ther

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.

Published: November 2024

Background: Increasing evidence suggests that mesenchymal stem cells (MSCs) repair traumatized tissues primarily through paracrine secretion and differentiation into specific cell types. However, the role of epithelial differentiation of MSCs in cutaneous wound healing is unclear. This study aimed to investigate the epithelial differentiation potential of gingival tissue-derived MSCs (GMSCs) in epithelial cell growth medium and the mechanisms underlying their differentiation into an epithelial-like cell phenotype.

Methods: We used scanning electron microscopy to examine GMSCs for epithelial differentiation. Quantitative real-time polymerase chain reaction and Western blotting were respectively used to measure genes and proteins related to epithelial differentiation. Immunofluorescence was used to examine subcellular localization of KLF4, KRT19, and β-catenin proteins. Transcriptome sequencing was used to enrich the mechanisms underlying epithelial differentiation in GMSCs. An MSAB inhibitor was used to validate the Wnt signaling pathway further. The wound healing rate and re-epithelialization were assessed through macroscopical observation and hematoxylin and eosin staining.

Results: GMSCs cultured in epithelial cell growth medium from days 3 to 15 exhibited decreased expression of mesenchymal-epithelial transition and stemness-related proteins (N-cadherin, Vimentin, KLF4, and SOX2), increased expression of epithelial-related proteins (KRT12, KRT15, KRT19, and E-cadherin), and exhibited epithelial-like morphology. Mechanistically, high-throughput sequencing revealed that the Wnt and TGF-beta signaling pathways were inhibited during epithelial differentiation of GMSCs (Epi-GMSCs). MSAB-induced Wnt signaling pathway inhibition promoted epithelial-related gene and protein expression. Furthermore, we demonstrated the ability of Epi-GMSCs to facilitate wound healing by improving re-epithelialization in a full-thickness skin defect model.

Conclusions: Collectively, this study uncovers that GMSCs have the ability to differentiate into epithelia and highlights a promising strategy for using Epi-GMSCs to improve cutaneous wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605919PMC
http://dx.doi.org/10.1186/s13287-024-04081-9DOI Listing

Publication Analysis

Top Keywords

epithelial differentiation
28
wound healing
20
cutaneous wound
12
epithelial
9
mesenchymal stem
8
stem cells
8
re-epithelialization full-thickness
8
differentiation
8
gmscs epithelial
8
epithelial cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!