Hydraulic strategy defines contrasting responses to an abrupt precipitation during a successive lethal drought.

BMC Plant Biol

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.

Published: November 2024

AI Article Synopsis

  • The study explores how two tree species, anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, react to sudden precipitation changes during drought, focusing on gas exchange, growth, and carbohydrate patterns.
  • Anisohydric R. pseudoacacia sacrifices leaves under stress, leading to decreased photosynthesis and non-structural carbohydrate (NSC) accumulation, while isohydric Q. acutissima maintains leaf integrity and NSC stability by reducing respiration.
  • The findings suggest that R. pseudoacacia's efficient water transport and growth come at the cost of embolism resistance, whereas Q. acutissima's resource-saving approach may enhance

Article Abstract

Background: As precipitation patterns are predicted to become more erratic, it's vital to understand how abrupt climate events will affect woody seedlings that develop different hydraulic strategies. We cultivated anisohydric Robinia pseudoacacia L. and isohydric Quercus acutissima Carr. in a greenhouse, and subjected an abrupt precipitation event during a successive drought. Patterns of leaf and root gas exchange, leaf and stem hydraulics, seedlings growth, and non-structural carbohydrate (NSC) patterns were determined.

Results: We found that as an anisohydric species, R. pseudoacacia seedlings adopted a strategy of sacrificing leaves in response to stress, resulting in the lowered photosynthesis and ultimately leading to a decrease in NSC accumulation. In contrast, isohydric Q. acutissima maintained the integrity of leaves by reducing respiratory consumption in response to drought stress, thereby ensured the stability of NSC pool.

Conclusion: R. pseudoacacia exhibited an extravagant strategy with efficient water transport, photosynthetic assimilation, and growth capabilities, but its resistance to embolism was relatively weak, while Q. acutissima adopted a resource-saving strategy with higher hydraulic safety. We also found that Q. acutissima seedlings were prone to allocate carbohydrates to maintain growth, while R. pseudoacacia preferred to sacrifice growth and aboveground NSC limitation only happened when precipitation was subjected after total stomatal closure. We thus believe that hydraulic strategy could define seedlings responses to drought and recovery, and further may adversely affect their re-sprouting capacity after drought stress relief.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606033PMC
http://dx.doi.org/10.1186/s12870-024-05859-yDOI Listing

Publication Analysis

Top Keywords

hydraulic strategy
8
abrupt precipitation
8
drought stress
8
drought
5
seedlings
5
hydraulic
4
strategy defines
4
defines contrasting
4
contrasting responses
4
responses abrupt
4

Similar Publications

This paper develops the methodological concept of river co-learning arenas (RCAs) and explores their potential to strengthen innovative grassroots river initiatives, enliven river commons, regenerate river ecologies, and foster greater socio-ecological justice. The integrity of river systems has been threatened in profound ways over the last century. Pollution, damming, canalisation, and water grabbing are some examples of pressures threatening the entwined lifeworlds of human and non-human communities that depend on riverine systems.

View Article and Find Full Text PDF

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

In this paper, we tackle the challenge of accurately controlling the position of the valve spool in hydraulic 4/3 two-stage directional control valves utilized in mobile applications. The pilot valve's overlapping design often leads to a significant dead zone, negatively impacting positioning accuracy and necessitating a sophisticated controller design. To overcome these challenges, we introduce a control strategy founded on a control-oriented model.

View Article and Find Full Text PDF

A switching active disturbance rejection control (SADRC) strategy was proposed to solve the composite disturbance challenge arising from gap, LuGre friction, hydraulic spring force, and external load disturbance in the double closed-loop digital hydraulic cylinder position control system. Firstly, leveraging the established mathematical model of the double closed-loop digital hydraulic cylinder, the high-order state equation was derived. Subsequently, the high-order double closed-loop digital hydraulic cylinder control system was transformed into a second-order integral series control system using ADRC strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!