A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photorealistic attention style transfer network for architectural photography photos. | LitMetric

Architectural photography style transfer, a task in computer vision, employs deep learning algorithms to transform the style of architectural photograph while preserving key structure and content. Existing algorithms face challenges due to the intricate details of buildings, including diverse shapes, lines, and textures. Moreover, considerations for artistic effects in architectural photography style transfer, such as lighting, shadows, and atmosphere, require high-quality image generation algorithms. However, current algorithms often struggle to address these complexities, leading to loss or blurring of details and less realistic images. To overcome these challenges, this paper proposes a Photorealistic Attention Style Transfer Network. The proposed approach utilizes a semantic segmentation model to accurately segment the input image into foreground and background components for independent style transfer. Subsequently, the transferred images are refined by focusing on intricate building parts using the coordinate attention mechanism. Additionally, the network incorporates loss functions to capture light, shadow, and colors in stylish images, ensuring realism while maintaining aesthetic appeal. Through comparative experiments, the proposed network shows better performance in terms of image fidelity and overall aesthetics, and the SSIM and PSNR indices are also better than the current mainstream methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604659PMC
http://dx.doi.org/10.1038/s41598-024-81249-6DOI Listing

Publication Analysis

Top Keywords

style transfer
20
architectural photography
12
photorealistic attention
8
attention style
8
transfer network
8
photography style
8
style
6
transfer
5
network
4
architectural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!