The lack of a chemical platform with high spatial dimensional diversity, coupled with the elusive multi-scale amorphous physics, significantly hinder advancements in amorphous electromagnetic wave absorption (EWA) materials. Herein, we present a synergistic engineering of phenolic multiple kinetic dynamics and discrete crystallization thermodynamics, to elucidate the origin of the dielectric properties in amorphous carbon and the cascade effect during EWA. Leveraging the scalability of phenolic synthesis, we design dozens of morphologies from the bottom up and combine with in-situ pyrolysis to establish a nanomaterial ecosystem of hundreds of amorphous carbon materials. Based on controlled discrete crystallization, nano-curvature regulation of spatial inversion symmetry-breaking structures, and surface electric field enhancement from multi-shell structures, the multi-scale charge imbalance triggers intense polarization. Both experiments and theories show that each scale is essential, which collectively drives broadband absorption (8.46 GHz) and efficient dissipation (-54.77 dB) of EWA performance. Our work on the amorphous nanostructure platform and the cascade effect can contribute to uncovering the missing pieces in amorphous physics and EWA research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604784PMC
http://dx.doi.org/10.1038/s41467-024-54770-5DOI Listing

Publication Analysis

Top Keywords

discrete crystallization
12
amorphous carbon
12
phenolic multiple
8
crystallization thermodynamics
8
electromagnetic wave
8
wave absorption
8
amorphous physics
8
amorphous
7
multiple kinetics-dynamics
4
kinetics-dynamics discrete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!