Applying anammox to municipal wastewater treatment promises enormous energy and resource savings; however, seasonally cold conditions pose a considerable challenge, impeding its future applications towards non-tropical regions. In this study, we establish a pilot-scale wastewater treatment plant (50 m/d) in northern China and implement the partial denitrification coupling anammox process on actual municipal wastewater. Despite seasonal cooling, the nitrogen removal efficiency remains high, ranging from 75.0 ± 4.6% at 27.8-20.0 °C to 70.4 ± 4.5% at 10-7.5 °C. This process exhibits remarkable low-temperature tolerance, achieving an in-situ anammox rate of 32.7 ± 4.7 g-N/(m·d) at 10-7.5 °C and contributing up to 39.7 ± 6.7% to nitrogen removal. Further N stable isotope tracing and kinetic tests reveal that the partial denitrification is capable of supplying increasingly abundant NO to anammox with decreasing temperature, enabling robust mainstream anammox against seasonal cooling. From 27.8 °C to 7.5 °C, anammox bacteria not only survive but thrive under mainstream conditions, with absolute and relative abundances increasing by 429.1% and 343.5%, respectively. This pilot-scale study sheds fresh light on extending mainstream anammox towards non-tropical regions, taking a necessary step forward toward the sustainability goals of the wastewater treatment sector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604950 | PMC |
http://dx.doi.org/10.1038/s41467-024-54805-x | DOI Listing |
PLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
Purifying methane from natural gas using adsorbents not only requires the adsorbents to possess excellent separation performance but also to overcome additional daunting challenges such as humidity interference and durability requirements for sustainable use. Herein, porous organic crystals of a new macrocycle () with superhydrophobic and self-healing features are prepared and employed for the purification of methane (>99.99% purity) from ternary methane/ethane/propane mixtures under 97% relative humidity.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Türkiye.
The consideration of scarcity and overexploitation of freshwater at the organizational level increased interest in the water footprint. The water footprint measures freshwater use for activities, taking into account water consumption and pollution contamination by classifying consumed water into groundwater and surface water (blue water), rainwater (green water), and polluted water (grey water). This study aims to identify a comprehensive water footprint inventory analysis for a denim washing organization and assess the grey water footprint (GWF) based on the effluent concentration of pollution indicators (chemical oxygen demand (COD), suspended solids (SS), ammonium nitrogen (NH4-N), and phenol) measured monthly in 2021.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
Ibuprofen (IBP) is one of the most consumed drugs in the world. It is only partially removed in wastewater treatment plants (WWTPs), being present in effluent wastewater and sewage sludge, causing the widespread introduction of IBP as an emergent xenobiotic in different environmental compartments. This study describes the use of CSW11, recently described as an IBP degrader, through bioaugmentation processes for the removal of IBP from water under different conditions (additional carbon sources, various concentrations of glucose and IBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!