Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To investigate the image quality and the performance of photon-counting detector (PCD) CT compared to conventional energy-integrating detector (EID) CT in identifying subsolid nodule (SSN) characteristics.
Materials And Methods: Participants with SSNs who underwent same-day EID CT and PCD CT between October 2023 and April 2024 were prospectively included. The 1.0 mm EID CT images and, subsequently, 1.0 mm, 0.4 mm, and 0.2 mm PCD CT images were reviewed to assess image noise and subjective image quality on a 5-point Likert scale. SSN characteristics, including lobulation, spiculation, pleural retraction, air cavities, intra-nodular vessel signs, internal vascular changes, and heterogeneous solid components, were evaluated. Additionally, a step-by-step observation and comparison method was used to determine the presence of any additional characteristics.
Results: Forty-eight participants (mean age: 56 ± 11 years; 16 males) with 89 SSNs were included. PCD CT significantly reduced radiation dose when using matched scans (1.79 ± 0.39 vs 2.17 ± 0.57 mSv, p < 0.001). Compared to 1.0 mm EID CT, 1.0 mm PCD CT images exhibited significantly lower objective image noise and higher subjective image quality (all p < 0.001). Compared to EID CT, PCD CT demonstrated enhanced visualization of subtle characteristics, except for lobulation, with a 0.4 mm section thickness offering a favorable balance between ultra-high resolution and perceived image quality for radiologists.
Conclusion: PCD CT facilitated radiation dose reduction and outperformed conventional EID CT in terms of image quality and visualization of SSN characteristics.
Key Points: Question PCD CT, featuring ultra-high-resolution mode acquisition and a thinner reconstruction, has not been fully explored for characterizing SSNs. Findings Compared to EID CT, PCD CT was associated with lower objective image noise, higher subjective image quality, and superior SSN characterization. Clinical relevance PCD CT effectively reduced the radiation dose delivered to the patients and enabled more precise SSN characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-024-11204-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!