Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pinfish (Lagodon rhomboides) are highly abundant in coastal ecosystems of the Gulf of Mexico and western Atlantic Ocean and serve as a crucial link in marine food webs. Despite their ecological relevance, little is known about this species' susceptibility to anthropogenic climate change. Here, we characterized patterns of mitochondrial genetic divergence and examined the upper thermal tolerance of pinfish across a large portion of the species' range. We found little evidence of population genetic differentiation among distant localities with divergent temperature regimes (e.g., Mexico and North Carolina), using two mitochondrial markers (cytochrome b [CytB] and cytochrome c oxidase I [COI]). This suggests high genetic connectivity, which implies low potential for local adaptation of populations to different thermal conditions along a latitudinal gradient. To further examine population-scale differences in thermal tolerance, we assessed the critical thermal maxima (CT) of pinfish from four localities: North Carolina, Florida Keys, Alabama, and Texas. We found that CT was similar across sites, with all localities showing an average CT within a 1°C temperature range (34.5-35.5°C). This suggests that southern populations of pinfish may be more susceptible to the detrimental effects of ocean warming, as individuals in lower latitudes regularly experience temperatures within a few degrees of their CT. Finally, we examined the influence of varying salinity on the upper thermal limit of the pinfish and found that pinfish show no variation in CT under salinity conditions ranging from hypo- to hypersaline (15-35 ppt). These results show that pinfish can tolerate a wide range of environmental parameters but may rely on phenotypic plasticity, rather than local adaptation, to distinct conditions to cope with different environmental regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.16015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!